1
|
Tao H, Li X, Wang Q, Yu L, Yang P, Chen W, Yang X, Zhou J, Geng D. Redox signaling and antioxidant defense in osteoclasts. Free Radic Biol Med 2024; 212:403-414. [PMID: 38171408 DOI: 10.1016/j.freeradbiomed.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Wu DZ, Zhu GZ, Zhao K, Gao JW, Cai GX, Li HZ, Huang YS, Tu C, Zhuang JS, Huang ZW, Zhong ZM. Age-related decline in melatonin contributes to enhanced osteoclastogenesis via disruption of redox homeostasis. Mol Med 2024; 30:10. [PMID: 38216878 PMCID: PMC10785421 DOI: 10.1186/s10020-024-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Increased oxidative stress contributes to enhanced osteoclastogenesis and age-related bone loss. Melatonin (MT) is an endogenous antioxidant and declines with aging. However, it was unclear whether the decline of MT was involved in the enhanced osteoclastogenesis during the aging process. METHODS The plasma level of MT, oxidative stress status, bone mass, the number of bone marrow-derived monocytes (BMMs) and its osteoclastogenesis were analyzed in young (3-month old) and old (18-month old) mice (n = 6 per group). In vitro, BMMs isolated from aged mice were treated with or without MT, followed by detecting the change of osteoclastogenesis and intracellular reactive oxygen species (ROS) level. Furthermore, old mice were treated with MT for 2 months to investigate the therapeutic effect. RESULTS The plasma level of MT was markedly lower in aged mice compared with young mice. Age-related decline in MT was accompanied by enhanced oxidative stress, osteoclastogenic potential and bone loss. MT intervention significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, decreased intracellular ROS and enhanced antioxidant capacity of BMMs from aged mice. MT supplementation significantly attenuated oxidative stress, osteoclastogenesis, bone loss and deterioration of bone microstructure in aged mice. CONCLUSIONS These results suggest that age-related decline of MT enhanced osteoclastogenesis via disruption of redox homeostasis. MT may serve as a key regulator in osteoclastogenesis and bone homeostasis, thereby highlighting its potential as a preventive agent for age-related bone loss.
Collapse
Affiliation(s)
- Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Kai Zhao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Gui-Xing Cai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jing-Shen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhi-Wei Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Cao Z, Niu X, Wang M, Yu S, Wang M, Mu S, Liu C, Wang Y. Anemoside B4 attenuates RANKL-induced osteoclastogenesis by upregulating Nrf2 and dampens ovariectomy-induced bone loss. Biomed Pharmacother 2023; 167:115454. [PMID: 37688987 DOI: 10.1016/j.biopha.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Xuben Niu
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siwang Yu
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Mingkun Wang
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Silong Mu
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Liu
- Department of Orthopedic, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Yaxi Wang
- Department of Emergency, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| |
Collapse
|