1
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a Target Gene of the EWSR1::FLI1 Fusion Oncoprotein, Regulates the Expression of the Focal Adhesion Protein TENSIN3. Mol Cancer Res 2024; 22:625-641. [PMID: 38588446 PMCID: PMC11219265 DOI: 10.1158/1541-7786.mcr-23-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X. Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C. Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Di X, Wang D, Wu J, Zhu X, Wang Y, Yan J, Wen L, Jiang H, Wen D, Shu B, Zhang S. Characterization of a germline variant TNS1 c.2999-1G > C in a hereditary cancer syndrome family. Gene 2024; 908:148304. [PMID: 38387708 DOI: 10.1016/j.gene.2024.148304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.
Collapse
Affiliation(s)
- Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ding Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jinzheng Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiaofang Zhu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jinhua Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Liang Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
3
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572864. [PMID: 38187702 PMCID: PMC10769395 DOI: 10.1101/2023.12.21.572864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|