1
|
Li Y, Lin Z, Li Y. Visceral obesity and HFpEF: targets and therapeutic opportunities. Trends Pharmacol Sci 2025; 46:337-356. [PMID: 40113531 DOI: 10.1016/j.tips.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The effectiveness of weight-loss drugs in heart failure (HF) with preserved ejection fraction (HFpEF) highlights the link between obesity (adipose tissue) and HF (the heart). Recent guidelines incorporating the waist:height ratio for diagnosing and treating obesity reflect the growing recognition of the significance of visceral adiposity. However, its unique impact on HFpEF and their complex relationship remain underexplored. With limited treatment options for obesity-related HFpEF, novel disease-modifying treatments are urgently needed. Here, we clarify the relationship between visceral obesity and HFpEF, introducing the concept of the visceral adipose tissue-heart axis to explore its mechanisms and therapeutic potential. We also discuss promising strategies targeting visceral obesity in HFpEF and propose directions for future research.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zhuofeng Lin
- The Innovation Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
2
|
Zhang D, Ma C, Wang Z, Liu Y, Liu Z, Li W, Liu Y, Wu C, Sun L, Jiang F, Jiang H, Su X, Peng L, Li J, Wang X, Yin H, Wan D, Zhou Y, Tian X, Li S, Jin Z, Ji B, Li Z, Huang H. Unraveling the Microenvironment and the Pathogenic Axis of HIF-1α-Visfatin-Fibrosis in Autoimmune Pancreatitis Using a Single-Cell Atlas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412282. [PMID: 39887620 PMCID: PMC11948021 DOI: 10.1002/advs.202412282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Autoimmune pancreatitis (AIP) is identified as a severe chronic immune-related disorder in pancreas, including two subtypes. In this study, pancreatic lesions in patients diagnosed as either type 1 AIP or type 2 AIP are examined, and these patients' peripheral blood at single-cell level. Furthermore, flow cytometry, immunofluorescence, and functional assays are performed to verify the identified cell subtypes. In type 1 AIP, there is a notable increase in the amount of B cells and plasma cells, and IgG4+ plasma cells are key pathogenic cells of AIP. The differentiation path of naïve-stage B cells into IgG4+ produced plasma cells is observed, and an increased amount of T helper cells and T follicular helper (Tfh) cells. This study also reveals that HIF-1α, an activated transcriptional factor, can directly bind to promoter site of NAMPT, promoting higher levels of visfatin production in HIF1A+ classical monocytes. Pancreatic stellate cells can be activated by extracellular visfatin and promote the development of fibrotic response in pancreatic lesions across both AIP subtypes. The current findings shed light on the exploration of dynamic alterations in peripheral blood cells and cell subgroups in pancreatic lesions of AIP, while elucidating a pathogenic cell subset and potential fibrosis mechanism of AIP.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of GastroenterologyChanghai HospitalShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Congjia Ma
- Department of GastroenterologyChanghai HospitalShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhen Wang
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Yanfang Liu
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Department of PathologyChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Zaoqu Liu
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Wanshun Li
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Yue Liu
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Chang Wu
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Liqi Sun
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Fei Jiang
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Hui Jiang
- Department of PathologyChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Xiaoju Su
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Lisi Peng
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Jiayu Li
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Xinyue Wang
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Hua Yin
- Department of GastroenterologyGeneral Hospital of Ningxia Medical UniversityNingxia Hui Autonomous RegionYinchuan750004China
| | - Dongling Wan
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Yuyan Zhou
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Xiaorong Tian
- Department of GastroenterologyChanghai HospitalShanghai200433China
| | - Shiyu Li
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Zhendong Jin
- Department of GastroenterologyChanghai HospitalShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Baoan Ji
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| | - Zhaoshen Li
- Department of GastroenterologyChanghai HospitalShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Haojie Huang
- Department of GastroenterologyChanghai HospitalShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| |
Collapse
|
3
|
Sun H, Tian Y, Wu H, Zhu C, Lin L, Chen S, Wu S, Wu Y. Chinese visceral adipose index is more closely associated with risk of arterial stiffness than traditional obesity indicators: a cohort study. Diabetol Metab Syndr 2024; 16:196. [PMID: 39143568 PMCID: PMC11323351 DOI: 10.1186/s13098-024-01436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Chinese visceral adiposity index (CVAI) is a new index to evaluate visceral adipose tissue in the Chinese population. Arterial stiffness (AS) is a kind of degeneration of the large arteries, and obesity is an essential contributing factor to AS. Our study aimed to explore the longitudinal association between CVAI and the risk of AS and to compare the predictive power of CVAI, body mass index (BMI), and waist circumference (WC) for AS. METHODS Between 2010 and 2020, a total of 14,877 participants participating in at least two brachial-ankle pulse wave velocity (baPWV) measurements from the Kailuan study were included. The Cox proportional hazard regression models were performed to evaluate the longitudinal association between CVAI and the risk of AS. The area under the receiver operating characteristic (ROC) curve was calculated to compare the predictive power of CVAI, BMI, and WC for AS. RESULTS After adjusting for potential confounding factors, CVAI was significantly associated with the risk of AS. Compared with the first CVAI quartile, the hazard ratios (HR) and 95% CI of the second, third, and fourth quartiles were 1.30 (1.09-1.56), 1.37 (1.15-1.63), and 1.49 (1.24-1.78), respectively. The area under ROC curve of CVAI was 0.661, significantly higher than BMI (AUC: 0.582) and WC (AUC: 0.606). CONCLUSION CVAI may be a reliable indicator to identify high-risk groups of AS in the Chinese general population, and the predictive power of CVAI for AS was better than BMI and WC.
Collapse
Affiliation(s)
- Huayu Sun
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Kailuan General Hospital, Tangshan, 063000, China
| | - Yan Tian
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Hao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Chenrui Zhu
- Kailuan General Hospital, Tangshan, 063000, China
| | - Liming Lin
- Kailuan General Hospital, Tangshan, 063000, China
| | - Shuohua Chen
- Kailuan General Hospital, Tangshan, 063000, China
| | - Shouling Wu
- Kailuan General Hospital, Tangshan, 063000, China
| | - Yuntao Wu
- Kailuan General Hospital, Tangshan, 063000, China.
| |
Collapse
|
4
|
Wu X, Wu Q, Gao L, Lv Y, Wu Z. Macrophage Polarization in Left Ventricular Structural Remodeling Induced by Hypertension. Rev Cardiovasc Med 2024; 25:121. [PMID: 39076555 PMCID: PMC11264024 DOI: 10.31083/j.rcm2504121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 07/31/2024] Open
Abstract
Following long-term hypertension, mechanical stretching and neuroendocrine stimulation, cause multiple heterogeneous cells of the heart to interact, and result in myocardial remodeling with myocardial hypertrophy and fibrosis. The immune system, specifically macrophages, plays a vital role in this process. Macrophages are heterogeneous and plastic. Regulated by factors such as microenvironment and cytokines, polarization can be divided into two main forms: M1/M2, with different polarizations playing different roles in left ventricular structural remodeling associated with hypertension. However, descriptions of macrophage phenotypes in hypertension-induced myocardial hypertrophy models are not completely consistent. This article summarizes the phenotypes of macrophages in several models, aiming to assist researchers in studying macrophage phenotypes in hypertension-induced left ventricular structural remodeling models.
Collapse
Affiliation(s)
- Xiaolin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong Provincial Education Department, 250355 Jinan, Shandong, China
| | - Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong Provincial Education Department, 250355 Jinan, Shandong, China
| | - Lin Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong Provincial Education Department, 250355 Jinan, Shandong, China
| | - Yu Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong Provincial Education Department, 250355 Jinan, Shandong, China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong Provincial Education Department, 250355 Jinan, Shandong, China
| |
Collapse
|
5
|
Wang Y, An X, Wang F, Jiang Y. Ginsenoside RH4 inhibits Ang II-induced myocardial remodeling by interfering with NFIL3. Biomed Pharmacother 2024; 172:116253. [PMID: 38359490 DOI: 10.1016/j.biopha.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Ventricular remodeling refers to the structural and functional changes of the heart under various stimuli or disease influences and may also be accompanied by myocardial fibrosis, where an excessive amount of fibrous tissue appears in the myocardial tissue, affecting the heart's normal contraction and relaxation. Hypertension is posing the potential risk of causing myocardial injury and remodeling. The significance of the renin-angiotensin-aldosterone system (RAAS) in myocardial remodeling cannot be overlooked. Drug targeting of RAAS can effectively lower blood pressure and reduce left ventricular mass. Studies have shown that ginsenoside Rh4 can inhibit oxidative stress and inflammatory responses. In this study, a myocardial remodeling model was established using angiotensin (Ang) II, and the inhibitory effect of RH4 on myocardial hypertrophy and remodeling induced by Ang II was investigated using pathological staining and quantitative polymerase chain reaction (qPCR). Immunofluorescence and qPCR demonstrated that Rh4 causes myocardial hypertrophy and the generation of reactive oxygen species (ROS) in vitro. The Rh4 target was identified using transcriptomics. The findings indicated that RH4 could inhibit myocardial hypertrophy, inflammatory fibrosis, and oxidative stress induced by Ang II, suggesting potential cardiovascular protection effects. In vitro experiments have shown that Rh4 inhibits myocardial hypertrophy. Transcriptomics revealed that nuclear factor interleukin-3 (NFIL3) is a downstream regulator of Rh4. By constructing AAV9-NFIL3 and injecting it into mice, it was found that NFIL3 overexpression interfered with anti-Ang II-induced myocardial remodeling of Rh4. These results indicate that Rh4 demonstrates potential therapeutic effects on myocardial hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Yitong Wang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Wang
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yinong Jiang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|