1
|
Virchea LI, Frum A, Georgescu C, Pecsenye B, Máthé E, Mironescu M, Crăciunaș MT, Totan M, Tănăsescu C, Gligor FG. An Overview of the Bioactivity of Spontaneous Medicinal Plants Suitable for the Improvement of Lung Cancer Therapies. Pharmaceutics 2025; 17:336. [PMID: 40143000 PMCID: PMC11945085 DOI: 10.3390/pharmaceutics17030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Lung cancer is the second cause of death in the world, being the most common type of cancer. Conventional therapies are not always recommended due to the particularities of patients. Thus, there is a need to develop new anticancer therapeutic agents. Medicinal plants constitute a source of bioactive compounds with therapeutic potential in lung cancer. The purpose of our narrative review is to evaluate and summarize the main studies on the cytotoxic effects of ten medicinal plants and their extracts, volatile oils, and bioactive compounds. We have also included studies that reported protective effects of these natural products against chemotherapy-induced toxicity. Studies were identified by assessing five databases using specific keywords. The investigated natural products possess cytotoxic effects on lung cancer cell cultures. Several mechanisms of action have been proposed including cell death by apoptosis, necrosis or autophagy, cell cycle arrest, the modulation of signaling pathways (PI3K/Akt and MAPK), the inhibition of migration, invasion and metastasis, antiangiogenesis, and targeting inflammation. Different bioactive compounds exhibit protective effects against chemotherapy-induced toxicity. Studies have shown promising results. To develop new therapeutic agents useful in treating lung cancer, the plants included in this review should be more deeply investigated to reveal their molecular mechanisms of action.
Collapse
Affiliation(s)
- Lidia-Ioana Virchea
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Adina Frum
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Cecilia Georgescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Bence Pecsenye
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
| | - Endre Máthé
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
- Department of Life Sciences, Faculty of Medicine, Vasile Goldis, Western University from Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
| | - Monica Mironescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Mihai-Tudor Crăciunaș
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 5-7, 550012 Sibiu, Romania;
| | - Maria Totan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Ciprian Tănăsescu
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Felicia-Gabriela Gligor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| |
Collapse
|
2
|
Asevedo EA, Ramos Santiago L, Kim HJ, Syahputra RA, Park MN, Ribeiro RIMA, Kim B. Unlocking the therapeutic mechanism of Caesalpinia sappan: a comprehensive review of its antioxidant and anti-cancer properties, ethnopharmacology, and phytochemistry. Front Pharmacol 2025; 15:1514573. [PMID: 39840104 PMCID: PMC11747472 DOI: 10.3389/fphar.2024.1514573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Herbal medicine are an invaluable reservoir of bioactive compounds, offering immense potential for novel drug development to address a wide range of diseases. Among these, Caesalpinia sappan has gained recognition for its historical medicinal applications and substantial therapeutic potential. This review explores the ethnopharmacological significance, phytochemical composition, and pharmacological properties of C. sappan, with a particular focus on its anticancer activities. Traditionally, C. sappan has been utilized for treating respiratory, gastrointestinal, and inflammatory conditions, demonstrating its broad therapeutic scope. The plant's rich array of bioactive compounds-flavonoids, triterpenoids, phenolic acids, and glycosides-forms the basis of its potent antioxidant, anti-inflammatory, and pharmacological effects. Modern pharmacological research has further substantiated its versatility, revealing anticancer, anti-diabetic, anti-infective, and hepatoprotective properties. However, significant challenges remain, including the need to unravel the precise molecular mechanisms underlying its anticancer effects, refine extraction and isolation methods for bioactive compounds, and validate its safety and efficacy through well-designed clinical trials. Particularly noteworthy is C. sappan's potential in combination therapies, where it may synergistically target multiple cancer pathways, enhance therapeutic outcomes, and mitigate adverse effects. This review synthesizes the findings from the past decade, providing a comprehensive evaluation of C. sappan's pharmacological promise while identifying critical areas for future research. By addressing these gaps, C. sappan could serve as a cornerstone for innovative therapeutic strategies, offering hope for improved management of cancer and other complex diseases.
Collapse
Affiliation(s)
- Estéfani Alves Asevedo
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Livia Ramos Santiago
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Bou Malhab LJ, Harb AA, Eldohaji L, Taneera J, Al‐Hroub HM, Abuhelwa A, Alzoubi KH, Abu‐Irmaileh B, Hudaib M, Almaliti J, Abdel‐Rahman WM, Shanableh A, Semreen MH, El‐Huneidi W, Abu‐Gharbieh E, Bustanji Y. Exploring the Anticancer Effect of Artemisia herba-alba on Colorectal Cancer: Insights From Eight Colorectal Cancer Cell Lines. Food Sci Nutr 2025; 13:e4715. [PMID: 39803277 PMCID: PMC11717013 DOI: 10.1002/fsn3.4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. Artemisia herba-alba, a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC). The primary objective of this study was to investigate the cytotoxic effects of the methanolic extract of A. herba-alba on eight CRC cell lines including: Caco-2, DLD1, RKO+/+p53, RKO-/-p53, HCT+/+p53, HCT-/-p53, SW620, and SW480. Specifically, the study investigated the extract's impact on cell viability, apoptosis, cell cycle progression, and effects on the PI3K/AKT/mTOR signaling pathway. Chemical derivatization and Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed a diverse array of bioactive compounds, including ephedrine, hydroxyflavone, quinolinic acid, 4-hydroxybenzoic acid, borneol, β-eudesmol, and camphor, known for their cytotoxic properties. The methanolic extract of A. herba-alba exhibited varying degrees of cytotoxicity across a panel of CRC cell lines, with IC50 values indicating differential sensitivity. The extract triggered apoptosis in many cell lines, irrespective of p53 status. Importantly, A. herba-alba extract caused G2-M phase cell cycle arrest in CRC cells, accompanied by a decrease in Cyclin B1 and CDK1 expression. Furthermore, the extract demonstrated an inhibitory effect on the PI3K/AKT/mTOR pathway, crucial in cancer progression. These findings highlight the promising anticancer potential of Artemisia herba-alba as a valuable resource for innovative CRC treatments. Further research is warranted to elucidate its specific anticancer characteristics and explore its potential incorporation into future cancer therapy approaches.
Collapse
Affiliation(s)
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Leen Eldohaji
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
| | - Jalal Taneera
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of MedicineUniversity of SharjahSharjahUAE
| | - Hamza M. Al‐Hroub
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
| | - Ahmad Abuhelwa
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of PharmacyUniversity of SharjahSharjahUAE
| | - Karem H. Alzoubi
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of PharmacyUniversity of SharjahSharjahUAE
| | | | | | - Jehad Almaliti
- School of PharmacyThe University of JordanAmmanJordan
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Wael M. Abdel‐Rahman
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- Department of Medical Laboratory Sciences, College of Health SciencesUniversity of SharjahSharjahUAE
| | - Abdallah Shanableh
- Research Institute of Science and Engineering (RISE)University of SharjahSharjahUAE
| | - Mohammad H. Semreen
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of PharmacyUniversity of SharjahSharjahUAE
| | - Waseem El‐Huneidi
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of MedicineUniversity of SharjahSharjahUAE
| | - Eman Abu‐Gharbieh
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of MedicineUniversity of SharjahSharjahUAE
- School of PharmacyThe University of JordanAmmanJordan
| | - Yasser Bustanji
- Sharjah Institute for Medical ResearchUniversity of SharjahSharjahUAE
- College of MedicineUniversity of SharjahSharjahUAE
- School of PharmacyThe University of JordanAmmanJordan
| |
Collapse
|
4
|
Tsai TH, Lo W, Wang HY, Tsai TL. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. J Funct Biomater 2024; 15:347. [PMID: 39590551 PMCID: PMC11595631 DOI: 10.3390/jfb15110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine. However, leek seeds have not been studied as a precursor of carbon dots. In this study, leek seeds underwent a supercritical fluid extraction process. Leek seed extract was obtained and then carbonized using a dry heating method, followed by hydrolysis to form carbon dot micelles (CD-micelles). CD-micelles exhibited analyte-induced PL quenching against Co2+ through the static quenching mechanism, with the formation of self-assembled Co2+-CD-micelle sphere particles. In addition, CD-micelles extracted metal ion through liquid-liquid extraction, with removal efficiencies of >90% for Pb2+, Al3+, Fe3+, Cr3+, Pd2+, and Au3+. Moreover, CD-micelles exhibited ABTS•+ radical scavenging ability and cytotoxicity for cisplatin-resistant lung cancer cells. CD-micelles killed cisplatin-resistant small-cell lung cancer cells in a dose-dependent manner with a cancer cell survival rate down to 12.8 ± 4.2%, with a similar treatment function to that of cisplatin. Consequently, CD-micelles functionalized as novel antioxidants show great potential as anticancer nanodrugs in cancer treatment.
Collapse
Affiliation(s)
- Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei Lo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsiu-Yun Wang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
5
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Zarei H, Vafaee F, Boskabady MH. The brain and systemic oxidative stress and memory changes induced by inhaled paraquat in rat improved by Crocus sativus. Leg Med (Tokyo) 2024; 71:102525. [PMID: 39243568 DOI: 10.1016/j.legalmed.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effect of Crocus sativus (Cs) on paraquat (PQ)-induced learning and memory deficits as well as brain and lung oxidative stress and systemic inflammation, and oxidative stress in rats. Rats were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ groups were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day Cs-L and Cs-H, 5 mg/kg/day pioglitazone (Pio), and Cs-L+Pio for 16 days during PQ exposure period. Learning and memory abilities were assessed by Morris water maze (MWM) and passive avoidance tests. PQ group showed increased numbers of total and differential WBCs in blood, and increased malondialdehyde (MDA), in the serum, brain, and lung but reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the MWM test and the latency to enter the dark room were reduced after receiving an electrical shock (p < 0.05 to P<0.001). In all treated groups, measured values were improved compared to PQ group (p < 0.05 to p < 0.001). The combination of Cs-L+Pio showed more pronounced effects compared to either treatment alone (p < 0.05 to p < 0.001). These findings suggest that Cs has neuroprotective properties and may be beneficial in the treatment of neurodegenerative diseases induced by noxious agents such as PQ.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossin Zarei
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Kul Köprülü T, Balkan J, Gezer B, Erkal Çam B. Glycolytic pathway analysis and gene expression profiles of combination of aloe vera and paclitaxel on non-small cell lung cancer and breast cancer. Med Oncol 2024; 41:277. [PMID: 39400682 DOI: 10.1007/s12032-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
The purpose of this study is to enhance the effectiveness of known anticancer medications using natural compounds. The study investigated the impact of combining AVE with PAX on non-small cell lung cancer (A549) and breast cancer (MCF7). In this study, A549 and MCF7 cells were treated with PAX (5 μM), AVE (24 μg/mL), and a combination of PAX and AVE (5 μM + 24 μg/mL). The glucose consumption rates of the cells were determined by extracellular acidification rate (ECAR) thanks to the SeaHorse XFe24 instrument. In addition, gene expression profiles were determined by performing Total RNA sequencing with the Novaseq 6000 instrument. Finally, the expressions of GAPDH, BAX, and BCL-2 genes involved in the apoptotic pathway were detected by RT-qPCR. The combined application of PAX and AVE reduced the ECAR value in both cell lines. According to the RT-qPCR results, the expression level of the apoptotic gene BAX increased in both cell lines (p < 0.05). Total RNA sequencing revealed that the combination effects of PAX and AVE play a role in the ribosome mechanism, thereby affecting the protein translation system in MCF7 while apoptosis and cell cycle have come to the forefront in A549.
Collapse
Affiliation(s)
- Tuğba Kul Köprülü
- Experimental Medicine Application and Research Center, Validebağ Research Park, University of Health Sciences, Altunizade, Kalfaçeşme Street, Üsküdar, 34622, Istanbul, Turkey.
- Division of Medical Laboratory Techniques, Department of Medical Services and Techniques, University of Health Sciences, Istanbul, Turkey.
| | - Jülide Balkan
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Bahar Gezer
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Burçin Erkal Çam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
7
|
Xu J, Tian L, Qi W, Lv Q, Wang T. Advancements in NSCLC: From Pathophysiological Insights to Targeted Treatments. Am J Clin Oncol 2024; 47:291-303. [PMID: 38375734 PMCID: PMC11107893 DOI: 10.1097/coc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.
Collapse
Affiliation(s)
- Jianan Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine
| | - Lin Tian
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Wenlong Qi
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Qingguo Lv
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Tan Wang
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
8
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
9
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
10
|
Naderi N, Mohammadgholi A, Asghari Moghaddam N. Biosynthesis of Copper Oxide-Silver Nanoparticles from Ephedra Intermedia Extract and Study of Anticancer Effects in HepG2 Cell Line: Apoptosis-Related Genes Analysis and Nitric Oxide Level Investigations. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:303-324. [PMID: 39493510 PMCID: PMC11530949 DOI: 10.22088/ijmcm.bums.13.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024]
Abstract
Liver cancer treatment faces significant obstacles such as resistance, recurrence, metastasis, and toxicity to healthy cells. Biometallic nanoparticles (NPs) have emerged as a promising approach to address these challenges. In this study, copper oxide-silver (Ag-doped CuO) NPs were prepared using a reduction method with Ephedra intermedia extract. The physicochemical properties of the NPs were evaluated using various techniques such as Field emission scanning electron microscopy (FESEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Additionally, this study has evaluated nitric oxide levels (NO), reactive oxygen species (ROS) production, Bax, Bcl2, P53, and Caspase3 genes expression, as well as cell viability within 24 hours in liver cancer cell line HepG2. FESEM and TEM imaging confirmed the nanostructural nature of the synthesized particles with sizes ranging from 31.27 to 88.98 nanometers. XRD analysis confirmed the crystal structure of the NPs. Comparative analysis showed that the IC50 values of the Ag-doped CuO NPs were significantly lower than that of the plant extracts. Molecular studies showed significantly increased expression of Bax, Caspase3, and P53 genes, inducing apoptosis in cancer cells, and downregulation of Bcl2 as a pro-metastasis gene. Additionally, the presence of Ag-doped CuO NPs significantly increased NO activity enzyme and ROS generation compared to the plant extract. The biosynthesized Ag-doped CuO NPs demonstrated the ability to induce apoptosis, increase ROS production, and enhance NO enzyme activity in HepG2 cancer cells, suggesting their potential as a therapeutic agent for liver cancer.
Collapse
Affiliation(s)
| | - Azadeh Mohammadgholi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
11
|
De Filippis B, Fantacuzzi M, Ammazzalorso A. Anticancer Activity of Natural Products and Related Compounds. Int J Mol Sci 2023; 24:16507. [PMID: 38003697 PMCID: PMC10671672 DOI: 10.3390/ijms242216507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Nature has always been a precious source of bioactive molecules which are used for the treatment of various diseases [...].
Collapse
Affiliation(s)
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (B.D.F.); (A.A.)
| | | |
Collapse
|