1
|
Bojja SL, Anand S, Minz RW, Medhi B. Metformin alleviates reactive gliosis and neurodegeneration, improving cognitive deficit in a rat model of temporal lobe epilepsy. Brain Res 2024; 1844:149138. [PMID: 39134259 DOI: 10.1016/j.brainres.2024.149138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Cognitive impairment is a prevalent co-morbidity associated with epilepsy. Emerging studies indicate that neuroinflammation could be a possible link between epilepsy and its comorbidities, including cognitive impairment. In this context, the roles of glial activation, proinflammatory mediators, and neuronal death have been well studied and correlated with epilepsy-associated cognitive impairment in animal studies. While recent reports have demonstrated the anti-epileptogenic and anti-convulsant actions of metformin, its effect on epilepsy associated cognitive deficit remains unknown. Therefore, the current study investigated the effect of metformin treatment on neuroinflammation, neurodegeneration, and cognitive deficits after inducing status epilepticus (SE) with lithium-pilocarpine in rats. Metformin treatment improved the hippocampal-dependent spatial and recognition memory in Morris water maze and Novel object recognition tasks, respectively. Further, metformin treatment attenuated microglial and astroglial activation, accompanied by reduced IL-1β, COX-2 and NF-ĸβ gene expression. Additionally, metformin conferred neuroprotection by inhibiting the neuronal death as assessed by Nissl staining and transmission electron microscopy. These findings suggest that metformin holds promise as a therapeutic intervention for cognitive impairment associated with epilepsy, possibly through its modulation of glial activation and neuronal survival. Further research is needed to elucidate the precise mechanisms and to assess the long-term effect of metformin in epilepsy-associated cognitive impairment.
Collapse
Affiliation(s)
- Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
2
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024; 20:2361-2372. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
3
|
He Y, Wang F, Zhang H, Li J, Zhou H, Wen Y. Vildagliptin showed anti-epileptic effects and promoted subthreshold A-type potassium currents by regulating DPPs and Kv4s binding. Neurosci Lett 2024; 842:137970. [PMID: 39245254 DOI: 10.1016/j.neulet.2024.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The subthreshold A-type potassium current (Isa), mediated by Kv4, is a hyperpolarizing current that decreases neuronal excitability. The Kv4 accessory proteins, DPP6 and DPP10 (DPPs), modulate the current. Thus, agents that modify the binding of DPPs to these channels affect neuronal excitability. Vildagliptin inhibits DPP4, a protein with structural similarities to DPPs. In this study, we investigated whether vildagliptin, an antidiabetic medication, exhibits anti-epileptic properties. Seizures were induced in rats by injecting pentylenetetrazole (PTZ), and vildagliptin at different doses was administered one hour before the PTZ injection. Vildagliptin treatment delayed the onset of epileptiform activity and reduced seizure duration and frequency. A dose-dependent decrease in DPPs was observed in vildagliptin-treated rats. We induced epileptic activity in cultured hippocampal neurons and found that treatment with vildagliptin suppressed the firing frequency. We found that the Isa current in cultured neurons was mediated by Kv4s and suppressed in epileptic neurons. Furthermore, the Kv4s to DPPs ratio in the channel complex was decreased in epileptic neurons, but was restored to a normal level in vildagliptin-treated neurons. In conclusion, the anti-epileptic effects of vildagliptin were likely mediated by the suppression of seizure-induced DPP6 and DPP10 expression and decreased membrane excitability by restoring Isa current density via the regulation of DPPs and Kv4s binding, indicating that vildagliptin may be a novel treatment option for epileptic patients.
Collapse
Affiliation(s)
- Ya He
- Department of Physical Examination Center, Chongqing University Jiangjin Hospital, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260 Chongqing, China
| | - Fei Wang
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260 Chongqing, China
| | - Hongxia Zhang
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, Number 439, Xuanhua Road, Yongchuan District, 402160 Chongqing, China
| | - Jingang Li
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260 Chongqing, China
| | - Hui Zhou
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260 Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260 Chongqing, China.
| |
Collapse
|
4
|
Wu W, Fan D, Zheng C, Que B, Lian QQ, Chen Y, Qiu R. Causal relationship between plasma metabolites and carpal tunnel syndrome risk: evidence from a mendelian randomization study. Front Mol Biosci 2024; 11:1431329. [PMID: 39421691 PMCID: PMC11484071 DOI: 10.3389/fmolb.2024.1431329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Carpal tunnel syndrome (CTS) is a common symptom of nerve compression and a leading cause of pain and hand dysfunction. However, the underlying biological mechanisms are not fully understood. The aim of this study was to reveal the causal effect of circulating metabolites on susceptibility to CTS. Methods We employed various Mendelian randomization (MR) methods, including Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Model, to examine the association between 1,400 metabolites and the risk of developing CTS. We obtained Single-nucleotide polymorphisms (SNPs) associated with 1,400 metabolites from the Canadian Longitudinal Study on Aging (CLSA) cohort. CTS data was derived from the FinnGen consortium, which included 11,208 cases and 1,95,047 controls of European ancestry. Results The results of the two-sample MR study indicated an association between 77 metabolites (metabolite ratios) and CTS. After false discovery rate (FDR) correction, a strong causal association between glucuronate levels (odd ratio (OR) [95% CI]: 0.98 [0.97-0.99], p FDR = 0.002), adenosine 5'-monophosphate (AMP) to phosphate ratio (OR [95% CI]:0.58 [0.45-0.74], p FDR = 0.009), cysteinylglycine disulfide levels (OR [95% CI]: 0.85 [0.78-0.92], p FDR = 0.047) and CTS was finally identified. Conclusion In summary, the results of this study suggest that the identified glucuronate, the ratio of AMP to phosphate, and cysteinylglycine disulfide levels can be considered as metabolic biomarkers for CTS screening and prevention in future clinical practice, as well as candidate molecules for future mechanism exploration and drug target selection.
Collapse
Affiliation(s)
- Wenbao Wu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chong Zheng
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Binfu Que
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qing qing Lian
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yangui Chen
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Rui Qiu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
5
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
6
|
Khawagi WY, Al-Kuraishy HM, Hussein NR, Al-Gareeb AI, Atef E, Elhussieny O, Alexiou A, Papadakis M, Jabir MS, Alshehri AA, Saad HM, Batiha GES. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes Metab 2024; 26:3031-3044. [PMID: 38802993 DOI: 10.1111/dom.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.
Collapse
Affiliation(s)
- Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Nawar R Hussein
- College of Pharmacy, Pharmacology Department, Al-Farahidi University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Esraa Atef
- Respiratory Therapy Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University Chandigarh-Ludhiana Highway, Mohali, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Majid S Jabir
- Applied Science Department, University of Technology, Baghdad, Iraq
| | - Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Al-Kuraishy HM, Sulaiman GM, Jabir MS, Mohammed HA, Al-Gareeb AI, Albukhaty S, Klionsky DJ, Abomughaid MM. Defective autophagy and autophagy activators in myasthenia gravis: a rare entity and unusual scenario. Autophagy 2024; 20:1473-1482. [PMID: 38346408 PMCID: PMC11210922 DOI: 10.1080/15548627.2024.2315893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
| | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
8
|
Turkistani A, Al-kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhussieny O, AL-Farga A, Aqlan F, Saad HM, Batiha GES. The functional and molecular roles of p75 neurotrophin receptor (p75 NTR) in epilepsy. J Cent Nerv Syst Dis 2024; 16:11795735241247810. [PMID: 38655152 PMCID: PMC11036928 DOI: 10.1177/11795735241247810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of pharmacology and toxicology, Collage of Medicine, Taif University, Taif, Kingdom of Saudi
| | - Hayder M. Al-kuraishy
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K. Albuhadily
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Ammar AL-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of Sciences, Ibb University, Ibb Governorate, Yemen
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
9
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM, Batiha GES. Evaluation and targeting of amyloid precursor protein (APP)/amyloid beta (Aβ) axis in amyloidogenic and non-amyloidogenic pathways: A time outside the tunnel. Ageing Res Rev 2023; 92:102119. [PMID: 37931848 DOI: 10.1016/j.arr.2023.102119] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In Alzheimer disease (AD), amyloid precursor protein (APP) and production of amyloid beta (Aβ) which is generated by amyloidogenic pathway is implicated in neurotoxicity and neuronal cell deaths. However, physiological Aβ level is essential to improves neuronal survival, attenuates neuronal apoptosis and has neuroprotective effect. In addition, physiological APP level has neurotrophic effect on the central nervous system (CNS). APP has a critical role in the brain growth and development via activation of long-term potentiation (LTP) and acceleration of neurite outgrowth. Moreover, APP is cleaved by α secretase to form a neuroprotective soluble APP alpha (sAPPα) in non-amyloidogenic pathway. Consequently, this mini-review purposes to highlight the possible beneficial role of APP and Aβ. In addition, this mini-review discussed the modulation of APP processing and Aβ production.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|