1
|
Li W, Zhang Q, Gu R, Zeng L, Liu H. Platelet factor 4 induces bone loss by inhibiting the integrin α5-FAK-ERK pathway. Animal Model Exp Med 2023; 6:573-584. [PMID: 37565509 PMCID: PMC10757219 DOI: 10.1002/ame2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The effect of platelet factor 4 (PF4) on bone marrow mesenchymal stem cells (BMMSCs) and osteoporosis is poorly understood. Therefore, this study aimed to evaluate the effects of PF4-triggered bone destruction in mice and determine the underlying mechanism. METHODS First, in vitro cell proliferation and cell cycle of BMMSCs were assessed using a CCK8 assay and flow cytometry, respectively. Osteogenic differentiation was confirmed using staining and quantification of alkaline phosphatase and Alizarin Red S. Next, an osteoporotic mouse model was established by performing bilateral ovariectomy (OVX). Furthermore, the PF4 concentrations were obtained using enzyme-linked immunosorbent assay. The bone microarchitecture of the femur was evaluated using microCT and histological analyses. Finally, the key regulators of osteogenesis and pathways were investigated using quantitative real-time polymerase chain reaction and Western blotting. RESULTS Human PF4 widely and moderately decreased the cell proliferation and osteogenic differentiation ability of BMMSCs. Furthermore, the levels of PF4 in the serum and bone marrow were generally increased, whereas bone microarchitecture deteriorated due to OVX. Moreover, in vivo mouse PF4 supplementation triggered bone deterioration of the femur. In addition, several key regulators of osteogenesis were downregulated, and the integrin α5-focal adhesion kinase-extracellular signal-regulated kinase (ITGA5-FAK-ERK) pathway was inhibited due to PF4 supplementation. CONCLUSIONS PF4 may be attributed to OVX-induced bone loss triggered by the suppression of bone formation in vivo and alleviate BMMSC osteogenic differentiation by inhibiting the ITGA5-FAK-ERK pathway.
Collapse
Affiliation(s)
- Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial RegionsChinese Academy of Medical SciencesBeijingChina
| | - Qiwei Zhang
- Department of Orthopedics, Beijing Hospital and National Center of Gerontology and Institute of Geriatrics MedicineChinese Academy of Medical SciencesBeijingChina
- Department of OrthopedicsBeijing Eden HospitalBeijingChina
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| | - Lijun Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| |
Collapse
|
2
|
Jung S, Gavriiloglou M, Séverac F, Haumesser L, Sayeh A, Chatelus E, Martin T, Huck O. Influence of systemic sclerosis on periodontal health: A case-control study. J Clin Periodontol 2023; 50:1348-1359. [PMID: 37431838 DOI: 10.1111/jcpe.13846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
AIM Patients with systemic sclerosis (SSc) present various clinical and radiological oral manifestations. However, precise evaluation of the oral features associated with diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc) is limited. The objective of this study was to evaluate the periodontal ligament (PDL) surface in SSc patients in comparison with controls. Assessment of oral-health-related quality of life (OHRQoL) and the levels of different biomarkers in the gingival crevicular fluid (GCF) was performed. MATERIALS AND METHODS SSc patients and matched controls underwent standardized oral examination and cone-beam computed tomography (CBCT). Levels of interleukin-6 (IL-6), chemokine (C-X-C motif) ligand 4 (CXCL-4) and matrix metalloproteinase-9 (MMP-9) in the GCF were determined by enzyme-linked immunosorbent assay. PDL surface was measured on CBCT axial views. OHRQoL was quantified using the Mouth Handicap in SSc Scale (MHISS). RESULTS Thirty-nine SSc patients and 39 controls were included. SSc patients exhibited increased PDL surface, higher number of missing teeth as well as elevated IL-6, MMP-9 and CXCL-4 levels. Reduced mouth opening was observed in dcSSc but not in lcSSc patients. MHISS score was higher in dcSSc than in lcSSc patients. Although worse periodontal parameters were found in both subgroups compared with controls, dcSSc patients presented lower gingival inflammation. CONCLUSIONS SSc is associated with PDL space widening, impaired oral health and OHRQoL.
Collapse
Affiliation(s)
- Sophie Jung
- Faculté de Chirurgie Dentaire Robert Frank, Université de Strasbourg, Strasbourg, France
- Pôle de Médecine et de Chirurgie bucco-dentaires, Centre de Référence des maladies rares orales et dentaires (O-Rares), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Strasbourg, France
| | - Marianna Gavriiloglou
- Faculté de Chirurgie Dentaire Robert Frank, Université de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Parodontologie, Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Séverac
- Groupe Méthodes en Recherche Clinique (GMRC), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lucille Haumesser
- Groupe Méthodes en Recherche Clinique (GMRC), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amira Sayeh
- Unité Fonctionnelle de Radiologie, Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuel Chatelus
- Service de Rhumatologie, Centre de Référence des maladies autoimmunes systémiques rares (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thierry Martin
- INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie Dentaire Robert Frank, Université de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Parodontologie, Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM UMR 1260 "Regenerative Nanomedicine", Strasbourg, France
| |
Collapse
|
3
|
Evaluation of the Effects of Dual Antiplatelet Therapy on Guided Bone Regeneration in Peri-Implant Bone Defect. J Craniofac Surg 2022:00001665-990000000-00504. [PMID: 36730057 DOI: 10.1097/scs.0000000000009137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
In this study, the authors aim to investigate the effect of dual antiplatelet agents on peri-implant-guided bone regeneraation by studying a sample of rats with titanium implants in their tibias. The rats were randomly divided into 5 groups: acetylsalicylic acid (ASA) (n=10), treated with 20 mg/kg of ASA; ASA+CLPD (Clopidogrel): (n=10), treated with 20 mg/kg of ASA and 30 mg/kg of clopidogrel; ASA+PRSG (Prasugrel): (n=10), treated with 20 mg/kg of ASA and 15 mg/kg of prasugrel; ASA+TCGR (Ticagrelor): (n=10), treated with 20 mg/kg of ASA and 300 mg/kg of ticagrelor; and a control group (n=10) received no further treatment after implant surgery. Bone defects created half of the implant length circumferencial after implant insertion and defects filled with bone grafts. After 8 weeks experimental period, the rats sacrified and implants with surrounding bone tissues were collected to histologic analysis; bone filling ratios of defects (%) and blood samples collected to biochemical analysis (urea, creatinine, aspartate aminotransferase, alanine aminotransferase, phosphorus, magnesium, alkaline phosphatase, calcium, and parathormone). A statistically significant difference was not detected between the groups for all parameters (P>0.05). When the percentage of new bone formation was examined, it was found that there was no statistically significant difference between the groups (P>0.05). Antiplatelet therapy may not adversely affect guided bone regeneration in peri-implant bone defects.
Collapse
|
4
|
Heinzmann ACA, Coenen DM, Vajen T, Cosemans JMEM, Koenen RR. Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH OPEN 2021; 5:e533-e542. [PMID: 34901735 PMCID: PMC8651446 DOI: 10.1055/a-1682-3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α
IIb
β
3
and P2Y
12
inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y
12
inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y
12
or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.
Collapse
Affiliation(s)
- Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Liu X, Jin J, Liu Y, Shen Z, Zhao R, Ou L, Xing T. Targeting TSP-1 decreased periodontitis by attenuating extracellular matrix degradation and alveolar bone destruction. Int Immunopharmacol 2021; 96:107618. [PMID: 34015597 DOI: 10.1016/j.intimp.2021.107618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
An important factor in periodontitis pathogenesis relates to a network of interactions of various cytokines. Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. We previously found that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS)-induced TSP-1 production, and that TSP-1 simultaneously and effectively elevated inflammatory cytokines in THP-1 macrophages. This suggests that TSP-1 plays an important role in the pathology of periodontitis. However, the function of TSP-1 on oral cells is largely unknown. This study aimed to elucidate the underlying molecular mechanisms of TSP-1 in human periodontal fibroblasts (hPDLFs). We demonstrated that TSP-1 is highly expressed in the gingival crevicular fluid of patients with chronic periodontitis and in the inflammatory gingival tissues of rats. TSP-1 overexpression or treatment with recombinant human TSP-1(rTSP-1) promoted the expression of MMP-2, MMP-9 and RANKL/OPG in hPDLFs, while anti-TSP-1 inhibited cytokines production from P. gingivalis LPS-treated hPDLFs. Additional experiments showed that SB203580 (a special p38MAPK inhibitor) inhibited MMP-2, MMP-9 and RANKL/OPG expression induced by rTSP-1. Thus, TSP-1 effectively promoted P. gingivalis LPS-induced periodontal tissue (extracellular matrix (ECM) and alveolar bone) destruction by the p38MAPK signalling pathway, indicating that it may be a potential therapeutic target against periodontitis.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China; Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, PR China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yajing Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China; Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, PR China
| | - Rongquan Zhao
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China; Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, PR China
| | - Linlin Ou
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China; Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, PR China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China; Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, PR China.
| |
Collapse
|
6
|
Fernandes NAR, Camilli AC, Maldonado LAG, Pacheco CGP, Silva AF, Molon RS, Spolidorio LC, Ribeiro de Assis L, Regasini LO, Rossa Junior C, Guimarães-Stabili MR. Chalcone T4, a novel chalconic compound, inhibits inflammatory bone resorption in vivo and suppresses osteoclastogenesis in vitro. J Periodontal Res 2021; 56:569-578. [PMID: 33641160 DOI: 10.1111/jre.12857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to assess the effect of a novel synthetic chalcone, Chalcone T4, on a murine model of periodontitis and on RANKL-induced osteoclastogenesis in vitro. BACKGROUND Chalcones are natural compounds with anti-inflammatory properties, and its synthetic analogs with enhanced biological effects have potential as therapeutic agents. Periodontitis is characterized by chronic inflammation of the periodontium and alveolar bone resorption. Safe and effective anti-inflammatory agents can have an important additive effect in the treatment in this disease. METHODS Periodontitis was induced via the installation of a ligature around the first molar. Rats (n = 32) received Chalcone T4 (5 and 50 mg/kg) or distilled water by gavage daily for 15 days. Outcomes assessed were bone resorption (μCT), TNF-α production (ELISA), cellular infiltrate, and collagen content (stereometric analysis, CD45+ cells by immunohistochemistry), and activation of NFATc1 and NF-kB (immunohistochemistry). In vitro, RAW 264.7 were treated with Chalcone T4 and stimulated with RANKL for assessment of osteoclast differentiation (actin ring staining) and activity (pit assay). RESULTS Chalcone T4 significantly reduced periodontitis-associated bone resorption, as well as the cellular infiltrate, while increasing the collagen content. Production of TNF-α, infiltration of CD45-positive cells, and NF-kB activation were markedly reduced. In vitro, chalcone T4 inhibited both osteoclast differentiation and activity. CONCLUSION Chalcone T4 significantly inhibited alveolar bone resorption and inflammation in vivo and RANKL-induced osteoclastogenesis in vitro, suggesting a therapeutic role for this compound in the treatment of periodontitis.
Collapse
Affiliation(s)
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Laura Andrea Gonzalez Maldonado
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Cindy Grace Pérez Pacheco
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Amanda Favoreto Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Rafael Scaf Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Luiz Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | |
Collapse
|
7
|
The influence of acetylsalicylic acid on bone regeneration: systematic review and meta-analysis. Br J Oral Maxillofac Surg 2020; 59:E1-E16. [PMID: 34736809 DOI: 10.1016/j.bjoms.2020.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 12/09/2022]
Abstract
Acetylsalicylic acid (ASA) is commonly used as a non-steroidal anti-inflammatory drug that interferes with multiple biological pathways. ASA acts by stimulating osteogenesis and inhibiting osteoclastogenesis. Thus, the objective of this study was to perform a systematic review and meta-analysis to evaluate the effectiveness of the use of ASA in the bone regeneration in animal models. This review was structured based on the PRISMA Statement and registered on PROSPERO database according to protocol number #CDR42018111403. The quality of evidence was assessed by using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE). With the development of search strategies, we identified studies on the use of ASA from the following databases: 1- Medline (via PubMed); 2 - Web of Science; 3 - Scopus; and 4 - EMBASE. A total of 296 articles were identified and after screening the title, abstract, and full text, only 18 studies were selected for qualitative analysis and 12 were selected for performance of the quantitative analysis (meta-analysis). A meta-analysis of the amount of bone tissue formed showed a significant advantage when ASA was locally used, revealing a mean difference (MD) of 22.75% (95% CI: 15.39-30.12) p < 0.00001. Within the limitations of the available data, the results were promising and showed that ASA can be effective in bone formation in animal models.
Collapse
|
8
|
Guimaraes-Stabili MR, de Aquino SG, de Almeida Curylofo F, Tasso CO, Rocha FRG, de Medeiros MC, de Pizzol JP, Cerri PS, Romito GA, Rossa C. Systemic administration of curcumin or piperine enhances the periodontal repair: a preliminary study in rats. Clin Oral Investig 2018; 23:3297-3306. [PMID: 30498979 DOI: 10.1007/s00784-018-2755-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/22/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Studies have documented the anti-inflammatory effects of spices, which may be related to treatment of chronic diseases. The purpose of this study was to evaluate the influence of curcumin and piperine and their association on experimental periodontal repair in rats. MATERIALS AND METHODS Periodontitis was induced via the installation of a ligature around the first molar. After 15 days, the ligatures were removed, and the rats were separated into groups (12 animals per group): (i) curcumin, (ii) piperine, (iii) curcumin+piperine, (iv) corn oil vehicle, and (v) control group (animals had ligature-induced periodontitis but were not treated). The compounds were administered daily, for 15 days by oral gavage. Animals were euthanized at 5 and 15 days, and hemimaxillae and gingival tissues were harvested. Bone repair was assessed by μCT (microcomputer tomography). Histological sections were stained with hematoxylin/eosin (H/E) for the assessment of cellular infiltrate or picrosirius red for quantification of collagen content, and subjected to immunohistochemistry for detecting NF-ĸB. Gingival tissues were used to evaluate levels of TGF-β and IL-10 (ELISA). RESULTS Curcumin and piperine increased the TGF-β level, significantly improved the collagen repair, and decreased the cellularity and activation of NF-ĸB in the periodontal tissues, but only curcumin caused a significant increase in early bone repair. CONCLUSION Curcumin and piperine promoted a substantive effect on tissue repair; however, there was not synergistic effect of compounds administered in combination. CLINICAL RELEVANCE Curcumin and piperine stimulates the tissue repair and may be potential candidates for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Morgana R Guimaraes-Stabili
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil.
| | - Sabrina Garcia de Aquino
- Department of Clinical and Social Dentistry- Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Fabiana de Almeida Curylofo
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Camilla Olga Tasso
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Fernanda Regina Godoy Rocha
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Marcell Costa de Medeiros
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - José Paulo de Pizzol
- Department of Histology and Embriology, School of Dentistry at Araraquara, UNESP, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- Department of Histology and Embriology, School of Dentistry at Araraquara, UNESP, Araraquara, SP, Brazil
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara - Univ Estadual Paulista (UNESP), Rua Humaita, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| |
Collapse
|
9
|
Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci Rep 2018; 8:6652. [PMID: 29703905 PMCID: PMC5923426 DOI: 10.1038/s41598-018-24866-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/13/2018] [Indexed: 01/17/2023] Open
Abstract
There is evidence indicating that curcumin has multiple biological activities, including anti-inflammatory properties. In vitro and in vivo studies demonstrate that curcumin may attenuate inflammation and the connective tissue destruction associated with periodontal disease. Most of these studies use systemic administration, and considering the site-specific nature of periodontal disease and also the poor pharmacodynamic properties of curcumin, we conducted this proof of principle study to assess the biological effect of the local administration of curcumin in a nanoparticle vehicle on experimental periodontal disease. We used 16 rats divided into two groups of 8 animals according to the induction of experimental periodontal disease by bilateral injections of LPS or of the vehicle control directly into the gingival tissues 3×/week for 4 weeks. The same volume of curcumin-loaded nanoparticles or of nanoparticle vehicle was injected into the same sites 2×/week. µCT analysis showed that local administration of curcumin resulted in a complete inhibition of inflammatory bone resorption and in a significant decrease of both osteoclast counts and of the inflammatory infiltrate; as well as a marked attenuation of p38 MAPK and NF-kB activation. We conclude that local administration of curcumin-loaded nanoparticles effectively inhibited inflammation and bone resorption associated with experimental periodontal disease.
Collapse
|
10
|
Steffens JP, Santana LCL, Pitombo JCP, Ribeiro DO, Albaricci MCC, Warnavin SVSC, Kantarci A, Spolidorio LC. The role of androgens on periodontal repair in female rats. J Periodontol 2018; 89:486-495. [DOI: 10.1002/jper.17-0435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022]
Affiliation(s)
- João Paulo Steffens
- Department of Stomatology; Universidade Federal do Paraná - UFPR; Curitiba PR Brazil
| | - Luis Carlos Leal Santana
- Department of Physiology and Pathology; Universidade Estadual Paulista - UNESP; School of Dentistry at Araraquara Araraquara SP Brazil
| | - Jonleno Coutinho Paiva Pitombo
- Department of Physiology and Pathology; Universidade Estadual Paulista - UNESP; School of Dentistry at Araraquara Araraquara SP Brazil
| | - Daniel Olivio Ribeiro
- Department of Physiology and Pathology; Universidade Estadual Paulista - UNESP; School of Dentistry at Araraquara Araraquara SP Brazil
| | - Maria Carolina Costa Albaricci
- Department of Physiology and Pathology; Universidade Estadual Paulista - UNESP; School of Dentistry at Araraquara Araraquara SP Brazil
| | | | - Alpdogan Kantarci
- Department of Applied Oral Sciences; Forsyth Institute; Cambridge MA
| | - Luis Carlos Spolidorio
- Department of Physiology and Pathology; Universidade Estadual Paulista - UNESP; School of Dentistry at Araraquara Araraquara SP Brazil
| |
Collapse
|
11
|
Du M, Pan W, Duan X, Yang P, Ge S. Lower dosage of aspirin promotes cell growth and osteogenic differentiation in murine bone marrow stromal cells. J Dent Sci 2016; 11:315-322. [PMID: 30894990 PMCID: PMC6395233 DOI: 10.1016/j.jds.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/18/2016] [Indexed: 01/15/2023] Open
Abstract
Background/purpose The effect of aspirin on bone regeneration remains controversial. This study aimed to determine the effect of various concentrations of aspirin on cell viability, osteogenic differentiation, cell cycle, and apoptosis on ST2 cells to find an effective range of aspirin for bone regeneration induction. Materials and methods Cell viability was measured with MTT assay after being stimulated with aspirin for 1 day, 2 days, 3 days, 5 days, and 7 days. Alkaline phosphatase (ALP) activity was measured after cells were treated for 1 day, 3 days, and 7 days. Expression of runt-related transcription factor 2 (Runx-2) was evaluated using Western-blot analysis at 3 days and 7 days. Flow cytometry was used for cell cycle and apoptosis measurement after cells were treated for 48 hours. Results Lower concentrations of aspirin (1μΜ and 10μM) promoted cell growth and increased ALP levels and Runx-2 expression, while higher concentrations (100μΜ and 1000μΜ) inhibited cell growth (P < 0.05), and lost their effect on ALP activity after 3 days, while even showing an inhibitory effect on the expression of Runx-2. Aspirin at a concentration of 100μM promoted cell mitosis from the S phase to the G2/M phase, and 1000μM arrested the cell cycle in the resting phase G0/G1 (P < 0.05). Parallel apoptosis/necrosis studies showed the percentage of cells in apoptosis decreased dramatically at any dose of aspirin. Conclusion A lower dosage of aspirin could promote ST2 cell growth, osteogenic differentiation, and inhibit their apoptosis which indicates that aspirin can be used as an alternative for bone regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, PR China
| | - Wan Pan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, PR China
| | - Xiaoqi Duan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, PR China
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, PR China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, PR China
| |
Collapse
|
12
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
13
|
Steffens JP, Coimbra LS, Rossa C, Kantarci A, Van Dyke TE, Spolidorio LC. Androgen receptors and experimental bone loss - an in vivo and in vitro study. Bone 2015; 81:683-690. [PMID: 26450018 PMCID: PMC4641040 DOI: 10.1016/j.bone.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/18/2015] [Accepted: 10/02/2015] [Indexed: 02/02/2023]
Abstract
Testosterone is a sex hormone that exhibits many functions beyond reproduction; one such function is the regulation of bone metabolism. The role played by androgen receptors during testosterone-mediated biological processes associated with bone metabolism is largely unknown. This study aims to use a periodontal disease model in vivo in order to assess the involvement of androgen receptors on microbial-induced inflammation and alveolar bone resorption in experimental bone loss. The impact of hormone deprivation was tested through both orchiectomy and chemical blockage of androgen receptor using flutamide (FLU). Additionally, the direct effect of exogenous testosterone, and the role of the androgen receptor, on osteoclastogenesis were investigated. Thirty male adult rats (n=10/group) were subjected to: 1-orchiectomy (OCX); 2-OCX sham surgery; or 3-OCX sham surgery plus FLU, four weeks before the induction of experimental bone loss. Ten OCX sham-operated rats were not subjected to experimental bone loss and served as healthy controls. The rats were euthanized two weeks later, so as to assess bone resorption and the production of inflammatory cytokines in the gingival tissue and serum. In order to study the in vitro impact of testosterone, osteoclasts were differentiated from RAW264.7 cells and testosterone was added at increasing concentrations. Both OCX and FLU increased bone resorption, but OCX alone was observed to increase osteoclast count. IL-1β production was increased only in the gingival tissue of OCX animals, whereas FLU-treated animals presented a decreased expression of IL-6. Testosterone reduced the osteoclast formation in a dose-dependent manner, and significantly impacted the production of TNF-α; FLU partially reversed these actions. When taken together, our results indicate that testosterone modulates experimental bone loss, and that this action is mediated, at least in part, via the androgen receptor.
Collapse
Affiliation(s)
- Joao Paulo Steffens
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil; Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA; Department of Specific Formation, Universidade Federal Fluminse - UFF, School of Dentistry at Nova Friburgo, 22 Doutor Sílvio Henrique Braune Street, 28625-650 Nova Friburgo, RJ, Brazil.
| | - Leila Santana Coimbra
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| | - Carlos Rossa
- Department of Diagnosis and Surgery, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, 02142 Cambridge, MA, USA
| | - Luis Carlos Spolidorio
- Department of Physiology and Pathology, Univ Estad Paulista - UNESP, School of Dentistry at Araraquara, 1680 Humaitá Street, 14801-903 Araraquara, SP, Brazil
| |
Collapse
|
14
|
Coimbra LS, Steffens JP, Alsadun S, Albiero ML, Rossa C, Pignolo RJ, Spolidorio LC, Graves DT. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis. J Dent Res 2015. [PMID: 26220958 DOI: 10.1177/0022034515598273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.
Collapse
Affiliation(s)
- L S Coimbra
- Department of Physiology and Pathology, Faculdade de Odontologia de Araraquara, UNESP-Univ Estadual Paulista-Araraquara, São Paulo, Brazil
| | - J P Steffens
- Department of Physiology and Pathology, Faculdade de Odontologia de Araraquara, UNESP-Univ Estadual Paulista-Araraquara, São Paulo, Brazil
| | - S Alsadun
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M L Albiero
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Rossa
- Department of Diagnosis and Surgery, Faculdade de Odontologia de Araraquara, UNESP-Univ Estadual Paulista-Araraquara, São Paulo, Brazil
| | - R J Pignolo
- Department of Medicine and Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L C Spolidorio
- Department of Physiology and Pathology, Faculdade de Odontologia de Araraquara, UNESP-Univ Estadual Paulista-Araraquara, São Paulo, Brazil
| | - D T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wyganowska-Świątkowska M, Urbaniak P, Nohawica MM, Kotwicka M, Jankun J. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels. Exp Ther Med 2015; 9:2025-2033. [PMID: 26161150 DOI: 10.3892/etm.2015.2414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review.
Collapse
Affiliation(s)
| | - Paulina Urbaniak
- Department of Cell Biology, Poznan University of Medical Sciences, Poznań 60-806, Poland
| | | | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Poznań 60-806, Poland
| | - Jerzy Jankun
- Department of Urology, Urology Research Centre, College of Medicine, University of Toledo, Toledo, OH 43614, USA ; Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia ; Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk 80-211, Poland
| |
Collapse
|
16
|
|
17
|
Engi SA, Cruz FC, Leão RM, Spolidorio LC, Planeta CS, Crestani CC. Cardiovascular complications following chronic treatment with cocaine and testosterone in adolescent rats. PLoS One 2014; 9:e105172. [PMID: 25121974 PMCID: PMC4133373 DOI: 10.1371/journal.pone.0105172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023] Open
Abstract
Concomitant use of anabolic androgenic steroids and cocaine has increased in the last years. However, the effects of chronic exposure to these substances during adolescence on cardiovascular function are unknown. Here, we investigated the effects of treatment for 10 consecutive days with testosterone and cocaine alone or in combination on basal cardiovascular parameters, baroreflex activity, hemodynamic responses to vasoactive agents, and cardiac morphology in adolescent rats. Administration of testosterone alone increased arterial pressure, reduced heart rate (HR), and exacerbated the tachycardiac baroreflex response. Cocaine-treated animals showed resting bradycardia without changes in arterial pressure and baroreflex activity. Combined treatment with testosterone and cocaine did not affect baseline arterial pressure and HR, but reduced baroreflex-mediated tachycardia. None of the treatments affected arterial pressure response to either vasoconstrictor or vasodilator agents. Also, heart to body ratio and left and right ventricular wall thickness were not modified by drug treatments. However, histological analysis of left ventricular sections of animals subjected to treatment with testosterone and cocaine alone and combined showed a greater spacing between cardiac muscle fibers, dilated blood vessels, and fibrosis. These data show important cardiovascular changes following treatment with testosterone in adolescent rats. However, the results suggest that exposure to cocaine alone or combined with testosterone during adolescence minimally affect cardiovascular function.
Collapse
Affiliation(s)
- Sheila A. Engi
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C. Cruz
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, US National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Rodrigo M. Leão
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, US National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Luís C. Spolidorio
- Department of Physiology and Pathology, School of Dentistry of Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|