1
|
Jin J, Shang Y, Zheng S, Dai L, Tang J, Bian X, He Q. Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation. Aging (Albany NY) 2024; 16:3302-3331. [PMID: 38334961 PMCID: PMC10929828 DOI: 10.18632/aging.205535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN. METHODS Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined. RESULTS Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the in vitro model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction. CONCLUSIONS ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yiwei Shang
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310004, China
| | - Siqiang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Limiao Dai
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Jiyu Tang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Xueyan Bian
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
2
|
Zhao X, Li L, Sun H, Jiang X, Bai W, Wu N, Wang J, Su B. A novel reporter mouse line for studying alveolar macrophages. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2527-2542. [PMID: 37428305 DOI: 10.1007/s11427-022-2325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 07/11/2023]
Abstract
Alveolar macrophages (AMs) are self-maintained immune cells that play vital roles in lung homeostasis and immunity. Although reporter mice and culture systems have been established for studying macrophages, an accurate and specific reporter line for alveolar macrophage study is still not available. Here we reported a novel Rspo1-tdTomato gene reporter mouse line that could specifically label mouse AMs in a cell-intrinsic manner. Using this reporter system, we visualized the dynamics of alveolar macrophages intravitally under steady state and characterized the alveolar macrophage differentiation under in vitro condition. By performing ATAC-seq, we found that insertion of the tdTomato cassette in the Rspo1 locus increased the accessibility of a PPARE motif within the Rspo1 locus and revealed a potential regulation by key transcription factor PPAR-γ for alveolar macrophage differentiation in vitro and in vivo. Consistently, perturbation of PPAR-γ by its agonist rosiglitazone or inhibitor GW9662 resulted in corresponding alteration of tdTomato expression in alveolar macrophages together with the transcription of PPAR-γ downstream target genes. Furthermore, global transcriptomic analyses of AMs from the wild type mice and the Rspo1-tdTomato mice showed comparable gene expression profiles, especially those AM-specific genes, confirming that the insertion of the tdTomato cassette in the Rspo1 locus does not impact the cell identity and biological function of AMs under normal condition. Taken together, our study provides an alternative tool for in vivo and in vitro labeling of alveolar macrophages with high specificity which could also be utilized as an indicator of PPAR-γ activity for future development of PPAR-γ specific targeting drugs.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoli Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Li H, Wang B, Wu C, Xie D, Li J, Wang N, Chen H, Liu L. Colquhounia Root Tablet Promotes Autophagy and Inhibits Apoptosis in Diabetic Nephropathy by Suppressing CD36 Expression In Vivo and In Vitro. J Diabetes Res 2023; 2023:4617653. [PMID: 37622127 PMCID: PMC10447140 DOI: 10.1155/2023/4617653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Methods Rat models of DN were established using streptozotocin (STZ). The primary metabolic parameters were assessed. The pathological changes of the rat kidney were investigated, and RNA sequencing was performed for each group. Renal tissue apoptosis was detected using the TUNEL assay. In rats and high glucose- (Hg-) induced HK-2 cells, RT-qPCR and western blot were used to analyze the expression of related genes and proteins. Hg medium was used to establish the diabetic kidney environment. The CCK-8 assay and flow cytometry were used to assess cell viability and apoptosis, respectively. Transmission electron microscopy was used to evaluate autophagy in vitro. Results CRT treatment significantly reduced albuminuria and renal tissue damage in DN rats. Furthermore, CRT administration inhibited apoptosis and promoted autophagy in DN rat kidney tissues. CRT downregulated CD36 expression and activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in DN rat kidney tissues. CRT intervention inhibited Hg-induced apoptosis and reversed autophagy in HK-2 cells. Moreover, overexpression of CD36 suppressed the beneficial effects of CRT. Conclusions Our study is the first to report that CRT inhibited apoptosis and promoted autophagy in vivo and in vitro, which was achieved by reducing CD36 expression and activating the AMPK pathway. Therefore, CRT may be an effective drug to treat DN.
Collapse
Affiliation(s)
- Han Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272013, China
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Baiju Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272013, China
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Changbao Wu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272013, China
| | - Dandan Xie
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272013, China
| | - Jizhen Li
- Department of Cardiology, Wenshang County People's Hospital, Jining, Shandong 272501, China
| | - Na Wang
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Hanwen Chen
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Lei Liu
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
4
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
5
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Du J, Cao L, Gao J, Jia R, Zhu H, Nie Z, Xi B, Yin G, Ma Y, Xu G. Protective Effects of Glycyrrhiza Total Flavones on Liver Injury Induced by Streptococcus agalactiae in Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2022; 11:1648. [PMID: 36421292 PMCID: PMC9686810 DOI: 10.3390/antibiotics11111648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical studies have confirmed that Glycyrrhiza total flavones (GTFs) have good anti-hepatic injury, but whether they have a good protective effect on anti-hepatic injury activity induced by Streptococcus agalactiae in tilapia (Oreochromis niloticus) is unknown. The aims of this study were to investigate the protective effects of Glycyrrhiza total flavones on liver injury induced by S. agalactiae (SA) and its underlying mechanism in fish. A total of 150 tilapia were randomly divided into five groups, each with three replicates containing 10 fish: normal control group, S. agalactiae infection group, and three Glycyrrhiza total flavone treatment groups (addition of 0.1, 0.5, or 1.0 g of GTF to 1 kg of feed). The normal control group was only fed with basic diet, after 60 d of feeding, and intraperitoneal injection of the same volume of normal saline (0.05 mL/10 g body weight); the S. agalactiae infection group was fed with basic diet, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight); the three GTF treatment groups were fed with a diet containing 0.1, 0.5, or 1.0 g/kg of GTF, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight). After 48 h injection, blood and liver tissues were collected to measure biochemical parameters and mRNA levels to evaluate the liver protection of GTFs. Compared with the control group, the serum levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (AKP) and glucose (GLU) in the streptococcal infection group increased significantly, while the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) decreased significantly; observations of pathological sections showed obvious damage to the liver tissue structure in response to streptococcal infection. S. agalactiae can also cause fatty liver injury, affecting the function of fatty acid β-oxidation and biosynthesis in the liver of tilapia, and also causing damage to function of the immune system. The addition of GTFs to the diet could improve oxidative stress injury caused by S. agalactiae in tilapia liver tissue to different degrees, promote the β-oxidation of fatty acids in the liver, accelerate the lipid metabolism in the liver, and repair the damaged liver tissue. GTFs have a good protective effect on liver injury caused by streptococcus.
Collapse
Affiliation(s)
- Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
7
|
Zhao W, Yang J, Xie X, Li C, Zhang W, Chen E, Guo Y, Yan L, Fang F, Yao H, Liu X. A MDM2 inhibitor MX69 inhibits adipocytes adipogenesis and differentiation. Biochem Biophys Res Commun 2022; 625:9-15. [PMID: 35944364 DOI: 10.1016/j.bbrc.2022.07.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
Abstract
Adipose tissue, a key regulator of systemic energy homeostasis, can synthesize and store triglycerides to meet long-term energy demands. In response to nutrient overload, adipose tissue expands by hypertrophy or hyperplasia. As an oncogene, MDM2 has exerted diverse biological activities including human development, tissue regeneration, and inflammation, in addition to major oncogenic activities. Recently, some studies indicated that MDM2 plays an important role in adipose tissue function. However, the role of MX69, a MDM2 inhibitor, in adipose tissue function has not been fully elucidated. Here, we administered MX69 intraperitoneally to high-fat diet-induced obesity (DIO) wild type C57BL/6 mice and found that MX69 could promote the body weight and white adipose tissue weight of DIO mice. Moreover, MX69 had no effects on glucose tolerance and insulin sensitivity in DIO mice. And MX69 treatment decreased the size of adipocytes and fat deposition in adipose tissue and inhibited 3T3-L1 preadipocytes differentiation. Mechanistically, MX69 inhibited the protein levels of MDM2 and the mRNA levels of genes related to adipogenesis and differentiation. In summary, our results indicated that MDM2 has a crucial and complex role in regulating adipose tissue function.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xianghong Xie
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunmei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yanfang Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fude Fang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xiaojun Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
8
|
Zhang Z, Sun Y, Xue J, Jin D, Li X, Zhao D, Lian F, Qi W, Tong X. The critical role of dysregulated autophagy in the progression of diabetic kidney disease. Front Pharmacol 2022; 13:977410. [PMID: 36091814 PMCID: PMC9453227 DOI: 10.3389/fphar.2022.977410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the major public health problems in society today. It is a renal complication caused by diabetes mellitus with predominantly microangiopathy and is a major cause of end-stage renal disease (ESRD). Autophagy is a metabolic pathway for the intracellular degradation of cytoplasmic products and damaged organelles and plays a vital role in maintaining homeostasis and function of the renal cells. The dysregulation of autophagy in the hyperglycaemic state of diabetes mellitus can lead to the progression of DKD, and the activation or restoration of autophagy through drugs is beneficial to the recovery of renal function. This review summarizes the physiological process of autophagy, illustrates the close link between DKD and autophagy, and discusses the effects of drugs on autophagy and the signaling pathways involved from the perspective of podocytes, renal tubular epithelial cells, and mesangial cells, in the hope that this will be useful for clinical treatment.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaojiao Xue
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| |
Collapse
|