Homocysteine induces melanocytes apoptosis via PERK-eIF2α-CHOP pathway in vitiligo.
Clin Sci (Lond) 2020;
134:1127-1141. [PMID:
32400851 DOI:
10.1042/cs20200218]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Vitiligo is a depigmentation disorder that develops as a result of the progressive disappearance of epidermal melanocytes. The elevated level of amino acid metabolite homocysteine (Hcy) has been identified as circulating marker of oxidative stress and known as a risk factor for vitiligo. However, the mechanism underlying Hcy-regulated melanocytic destruction is currently unknown. The present study aims to elucidate the effect of Hcy on melanocytic destruction and its involvement in the pathogenesis of vitiligo. Our results showed that Hcy level was significantly elevated in the serum of progressive vitiligo patients. Notably, Hcy induced cell apoptosis in melanocytes via activating reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-C/EBP homologous protein (CHOP) pathway. More importantly, folic acid, functioning in the transformation of Hcy, could lower the intracellular Hcy level and further reverse the apoptotic effect of Hcy on melanocytes. Additionally, Hcy disrupted melanogenesis whereas folic acid supplementation could reverse the melanogenesis defect induced by Hcy in melanocytes. Taken together, Hcy is highly increased in vitiligo patients at progressive stage, and our in vitro studies revealed that folic acid could protect melanocytes from Hcy-induced apoptosis and melanin synthesis inhibition, indicating folic acid as a potential benefit agent for patients with progressive vitiligo.
Collapse