1
|
Fusano M, Soglia S, Franceschini F, Cavazzana I, Fredi M, Tomasi C, Calzavara-Pinton I, Arisi M, Licata G, Mezzana S, Rossi M, Venturini M, Calzavara-Pinton P. Evaluation of the incidence of melanoma and non-melanoma skin cancer in patients with systemic lupus erythematosus and systemic sclerosis. Ital J Dermatol Venerol 2024; 159:436-443. [PMID: 39069842 DOI: 10.23736/s2784-8671.24.07763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incidence of skin cancer in patients with systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) has only been investigated with retrospective studies enrolling a low number of patients. The aims of our study were to assess the incidence of skin cancer in two large cohorts of patients, one with SLE and the other with SSc and investigating possible risk factors. METHODS Ninety SLE, 53 SSc patients and 392 control subjects were enrolled. A questionnaire including personal and medical details was fulfilled. The severity of photoaging, photosensitivity and sun exposure habits was assessed. Skin lesions were evaluated using a video-dermatoscope. Suspicious lesions were surgically removed. RESULTS The incidence of skin cancer was not different to those of controls. However, a decrease in the incidence of basal cell carcinoma was found in patients with SLE. This finding associated negatively with photosensitivity. SSc patients with skin malignancies did not report photosensitivity and did not adopt a careful photoprotection. A positive association was found between skin cancer and diffuse cutaneous sclerosis, pitting scars, severe photoaging and treatment with Iloprost. CONCLUSIONS Regular avoidance of sun exposure and photoprotection are effective in reducing the development of skin cancer in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Marta Fusano
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Simone Soglia
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Franco Franceschini
- Department of Rheumatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Ilaria Cavazzana
- Department of Rheumatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Micaela Fredi
- Department of Rheumatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Irene Calzavara-Pinton
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Mariachiara Arisi
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy -
| | - Gaetano Licata
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Sara Mezzana
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Mariateresa Rossi
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | - Marina Venturini
- Department of Dermatology, University of Brescia and ASST-Spedali Civili, Brescia, Italy
| | | |
Collapse
|
2
|
Zarfl M, Patra V, Bordag N, Quehenberger F, Golob-Schwarzl N, Gruber-Wackernagel A, Wolf P. Eradication of skin microbiota restores cytokine production and release in polymorphic light eruption. Exp Dermatol 2024; 33:e15034. [PMID: 38459631 DOI: 10.1111/exd.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Polymorphic light eruption (PLE) has been mechanistically linked to cytokine abnormalities. Emerging preclinical evidence posits the skin microbiome as a critical modulator of ultraviolet (UV)-induced cytokine expression, thereby influencing subsequent immune responses. This intricate relationship remains underexplored in the context of PLE. Hence, we investigated the differential responses between disinfected and non-disinfected skin following both single and repetitive exposures to solar-simulated UV radiation in patients with PLE. An experimental, half-body pilot study was conducted involving six PLE patients and 15 healthy controls. Participants' skin was exposed to single and multiple doses of solar-simulated UV radiation, both in disinfected and in non-disinfected skin areas. The co-primary outcomes were PLE score and cytokine expression in blister fluid analysed through OLINK proteomic profiling. Secondary outcomes were erythema, pigmentation, induction of apoptotic cells in vacuum-generated suction blisters, and density of infiltrate in skin biopsies of PLE patients. Among the 71 cytokines analysed, baseline expression levels of 20 specific cytokines-integral to processes such as apoptosis, inflammation, immune cell recruitment, cellular growth, and differentiation-were significantly impaired in PLE patients compared with healthy controls. Notably, skin disinfection reversed the observed cytokine imbalances following a single UV exposure at the minimal erythema dose (MED) level and exhibited even more pronounced effects after multiple UV exposures. However, no significant differences were evident in PLE score, erythema, pigmentation, or rates of apoptotic cell induction upon UV radiation. These findings provide evidence for UV-driven cytokine regulation by the skin microbiota and imply microbiome involvement in the PLE immune response.
Collapse
Affiliation(s)
- Maximilian Zarfl
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Natalie Bordag
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz, Austria
| | - Nicole Golob-Schwarzl
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Alexandra Gruber-Wackernagel
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
- Medical University of Graz, BioMedTech, Graz, Austria
| |
Collapse
|
3
|
Chimbetete T, Choshi P, Pedretti S, Porter M, Roberts R, Lehloenya R, Peter J. Skin infiltrating T-cell profile of drug reaction with eosinophilia and systemic symptoms (DRESS) reactions among HIV-infected patients. Front Med (Lausanne) 2023; 10:1118527. [PMID: 37215719 PMCID: PMC10196146 DOI: 10.3389/fmed.2023.1118527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Drug Reaction with Eosinophilia Systemic Symptoms (DRESS) is more common in persons living with HIV (PLHIV), and first-line anti-TB drugs (FLTDs) and cotrimoxazole are the commonest offending drugs. Limited data is available on the skin infiltrating T-cell profile among DRESS patients with systemic CD4 T-cell depletion associated with HIV. Materials and methods HIV cases with validated DRESS phenotypes (possible, probable, or definite) and confirmed reactions to either one or multiple FLTDs and/or cotrimoxazole were chosen (n = 14). These cases were matched against controls of HIV-negative patients who developed DRESS (n = 5). Immunohistochemistry assays were carried out with the following antibodies: CD3, CD4, CD8, CD45RO and FoxP3. Positive cells were normalized to the number of CD3+ cells present. Results Skin infiltrating T-cells were mainly found in the dermis. Dermal and epidermal CD4+ T-cells (and CD4+/CD8+ ratios) were lower in HIV-positive vs. negative DRESS; p < 0.001 and p = 0.004, respectively; without correlation to whole blood CD4 cell counts. In contrast, no difference in dermal CD4+FoxP3+ T-cells was found in HIV-positive vs. negative DRESS, median (IQR) CD4+FoxP3+ T-cells: [10 (0-30) cells/mm2 vs. 4 (3-8) cells/mm2, p = 0.325]. HIV-positive DRESS patients reacting to more than one drug had no difference in CD8+ T-cell infiltrates, but higher epidermal and dermal CD4+FoxP3+ T-cell infiltrates compared to single drug reactors. Conclusion DRESS, irrespective of HIV status, was associated with an increased skin infiltration of CD8+ T-cells, while CD4+ T-cells were lower in HIV-positive DRESS compared to HIV-negative DRESS skin. While inter-individual variation was high, the frequency of dermal CD4+FoxP3+ T-cells was higher in HIV-positive DRESS cases reacting to more than one drug. Further research is warranted to understand the clinical impact of these changes.
Collapse
Affiliation(s)
- Tafadzwa Chimbetete
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Mireille Porter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Riyaadh Roberts
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rannakoe Lehloenya
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
4
|
Patra V, Strobl J, Atzmüller D, Reininger B, Kleissl L, Gruber-Wackernagel A, Nicolas JF, Stary G, Vocanson M, Wolf P. Accumulation of Cytotoxic Skin Resident Memory T Cells and Increased Expression of IL-15 in Lesional Skin of Polymorphic Light Eruption. Front Med (Lausanne) 2022; 9:908047. [PMID: 35755042 PMCID: PMC9226321 DOI: 10.3389/fmed.2022.908047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with polymorphic light eruption (PLE) develop lesions upon the first exposure to sun in spring/summer, but lesions usually subside during season due to the natural (or medical) photohardening. However, these lesions tend to reappear the following year and continue to do so in most patients, suggesting the presence of a disease memory. To study the potential role of skin resident memory T cells (Trm), we investigated the functional phenotype of Trm and the expression of IL-15 in PLE. IL-15 is known to drive Trm proliferation and survival. Multiplex immunofluorescence was used to quantify the expression of CD3, CD4, CD8, CD69, CD103, CD49a, CD11b, CD11c, CD68, granzyme B (GzmB), interferon-gamma (IFN-γ), and IL-15 in formalin-fixed, paraffin-embedded lesional skin samples from PLE patients and healthy skin from control subjects. Unlike the constitutive T cell population in healthy skin, a massive infiltration of T cells in the dermis and epidermis was observed in PLE, and the majority of these belonged to CD8+ T cells which express Trm markers (CD69, CD103, CD49a) and produced cytotoxic effector molecules GzmB and IFN-γ. Higher numbers of CD3+ T cells and CD11b+CD68+ macrophages produced IL-15 in the dermis as compared to healthy skin. The dominant accumulation of cytotoxic Trm cells and increased expression of IL-15 in lesional skin of PLE patients strongly indicates the potential role of skin Trm cells in the disease manifestation and recurrence.
Collapse
Affiliation(s)
- VijayKumar Patra
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Bärbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Jean-Francois Nicolas
- Allergy and Clinical Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Lee CN, Chen TY, Wong TW. The Immunogenetics of Photodermatoses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:369-381. [DOI: 10.1007/978-3-030-92616-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gruber-Wackernagel A, Schug T, Graier T, Legat FJ, Rinner H, Hofer A, Quehenberger F, Wolf P. Long-Term Course of Polymorphic Light Eruption: A Registry Analysis. Front Med (Lausanne) 2021; 8:694281. [PMID: 34336899 PMCID: PMC8323194 DOI: 10.3389/fmed.2021.694281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Little is known about the long-term course of polymorphic light eruption (PLE). Objective: To predict disease course, a questionnaire was sent to patients whose PLE had been diagnosed between March 1990 and December 2018 and documented in the Austrian Cooperative Registry for Photodermatoses. Methods: In January 2019, 205 PLE patients were contacted by mail and asked to complete a questionnaire on their disease course, including whether the skin's sun sensitivity had normalized (i.e., PLE symptoms had disappeared), improved, stayed the same, or worsened over time. Patients who reported normalization of sun sensitivity were asked to report when it had occurred. Results: Ninety-seven patients (79 females, 18 males) returned a completed questionnaire. The mean (range) duration of follow-up from PLE onset was 29.6 (17–54) years for females and 29.4 (16–47) years for males. The disease disappeared in 32 (41%) females after 17.4 (2–41) years and in 4 (24%) males after 11.8 (5–26) years. Twenty-nine (37%) females and 6 (35%) males reported improvement of symptoms over time; 15 females (19%) and 7 males (41%) reported no change; and 3 females (4%) and no males reported worsening of symptoms. Kaplan-Meier analysis revealed that after 20 years 74% (95%CI, 64–82%) of patients still suffered from PLE. PLE lesion persistence (>1 week) tended to predict a prolonged course of PLE. Conclusions: PLE usually takes a long-term course over many years though in most patients its symptoms improve or disappear over time. How improvement relates to the pathophysiology of the disease remains to be determined.
Collapse
Affiliation(s)
| | - Tanja Schug
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Thomas Graier
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Franz J Legat
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Hanna Rinner
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Angelika Hofer
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Bardawil T, Khalil S, Kurban M, Abbas O. Diagnostic utility of plasmacytoid dendritic cells in dermatopathology. Indian J Dermatol Venereol Leprol 2021; 87:3-13. [PMID: 33580939 DOI: 10.25259/ijdvl_638_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
Abstract
Differentiating cutaneous diseases that mimic each other clinically and histopathologically can at times be a challenging task for the dermatopathologist. At the same time, differentiation of entities with overlapping features may be crucial for patient management. Although not seen in normal skin, plasmacytoid dendritic cells usually infiltrate the skin in several infectious, inflammatory/autoimmune and neoplastic entities. Plasmacytoid dendritic cells can be identified in tissue using specific markers such as CD123 and/or blood-derived dendritic cell antigen-2. Plasmacytoid dendritic cells are the most potent producers of type I interferons and their activity may therefore be assessed indirectly in tissue using human myxovirus resistance protein A, a surrogate marker for type I interferon production. In recent years, accumulating evidence has established the utility of evaluating for specific plasmacytoid dendritic cell-related parameters (plasmacytoid dendritic cell content, distribution and clustering and/ or human myxovirus resistance protein A expression) as a diagnostic tool in differentiating cutaneous diseases with overlapping features such as the alopecias, lupus and its mimics, and neoplastic entities. In this review, we provide an update on the current evidence on this topic and on the contexts where this can be a useful adjunct to reach the histopathological diagnosis.
Collapse
Affiliation(s)
- Tara Bardawil
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samar Khalil
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
9
|
Plasmacytoid dendritic cells in dermatology. An Bras Dermatol 2020; 96:76-81. [PMID: 33342561 PMCID: PMC7838105 DOI: 10.1016/j.abd.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells are part of the dendritic cells family and are a relevant link between innate and adaptive immunity. They are the most potent producers of type 1 interferon, generating antiviral response, stimulating macrophages and dendritic cells and inducing activation and migration of natural killer cells. Plasmacytoid dendritic cells also exert a role as antigen-presenting cells, promote T-lymphocyte responses, immunoregulation, plasma cells differentiation and antibody secretion. Even though plasmacytoid dendritic cells are not usually present in normal skin, their presence is detected in healing processes, viral infections, and inflammatory, autoimmune, and neoplastic diseases. In recent years, the presence of plasmacytoid dendritic cells in several dermatological diseases has been described, enhancing their potential role in the pathogenesis of such conditions. Future studies on the role of plasmacytoid dendritic cells in dermatology may lead to new therapeutic targets.
Collapse
|
10
|
Valbuena MC, Rolon Cadena M. Epidermal Langerhans cells resistance to solar-simulated radiation in actinic prurigo patients with low minimal erythema dose. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 36:105-110. [PMID: 31541482 DOI: 10.1111/phpp.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Actinic prurigo is a chronic photodermatosis of unclear pathogenesis. Epidermal Langerhans cell resistance to migration after ultraviolet radiation exposure has been proposed as a possible mechanism, as occurs in polymorphic light eruption patients. The purpose of this study was to evaluate the effect of solar-simulated radiation (SSR) on epidermal Langerhans cells in the uninvolved skin of actinic prurigo patients. PATIENTS AND METHODS Fifteen patients with actinic prurigo participated in the study. A biopsy from the uninvolved and unirradiated skin of the left buttock was performed, and another from the uninvolved skin of the right buttock, 72 hours after exposure to two MEDs of SSR. Immunohistochemistry staining was used to identify Langerhans cells (CD1a) in all samples. RESULTS In actinic prurigo patients with normal MED, there was a significant decrease in the number of epidermal Langerhans cells on the buttock skin exposed to two MED of SSR compared with the unirradiated buttock skin (P = .02 and .035 respectively). On the contrary, in patients with low MED there were no significant differences in the number of epidermal Langerhans cells between irradiated and unirradiated skin (P = .39). CONCLUSION Epidermal Langerhans cells migration after ultraviolet radiation exposure is decreased in actinic prurigo patients with low MED as has been reported in PLE patients, especially, those with low MED or positive UVB provocation tests. Langerhans cells resistance could be part of a common pathogenic mechanism in these two photodermatoses.
Collapse
Affiliation(s)
- Martha Cecilia Valbuena
- Photodermatology Unit, Hospital Universitario Centro Dermatologico Federico Lleras Acosta, Bogotá, Colombia
| | - Mariam Rolon Cadena
- Pathology Department, Hospital Universitario de la Fundacion Santafe de Bogotá, Bogotá, Colombia
| |
Collapse
|