1
|
Laugier F, Saumitou-Laprade P, Vernet P, Lepart J, Cheptou PO, Dufay M. Male fertility advantage within and between seasons in the perennial androdioecious plant Phillyrea angustifolia. ANNALS OF BOTANY 2023; 132:1219-1232. [PMID: 37930793 PMCID: PMC10902885 DOI: 10.1093/aob/mcad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND AIMS Androdioecy, the co-occurrence of males and hermaphrodites, is a rare reproductive system. Males can be maintained if they benefit from a higher male fitness than hermaphrodites, referred to as male advantage. Male advantage can emerge from increased fertility owing to resource reallocation. However, empirical studies usually compare sexual phenotypes over a single flowering season, thus ignoring potential cumulative effects over successive seasons in perennials. In this study, we quantify various components of male fertility advantage, both within and between seasons, in the long-lived perennial shrub Phillyrea angustifolia (Oleaceae). Although, owing to a peculiar diallelic self-incompatibility system and female sterility mutation strictly associated with a breakdown of incompatibility, males do not need fertility advantage to persist in this species, this advantage remains an important determinant of their equilibrium frequency. METHODS A survey of >1000 full-sib plants allowed us to compare males and hermaphrodites for several components of male fertility. Individuals were characterized for proxies of pollen production and vegetative growth. By analysing maternal progeny, we compared the siring success of males and hermaphrodites. Finally, using a multistate capture-recapture model we assessed, for each sexual morph, how the intensity of flowering in one year impacts next-year growth and reproduction. KEY RESULTS Males benefitted from a greater vegetative growth and flowering intensity. Within one season, males sired twice as many seeds as equidistant, compatible hermaphroditic competitors. In addition, males more often maintained intense flowering over successive years. Finally, investment in male reproductive function appeared to differ between the two incompatibility groups of hermaphrodites. CONCLUSION Males, by sparing the cost of female reproduction, have a higher flowering frequency and vegetative growth, both of which contribute to male advantage over an individual lifetime. This suggests that studies analysing sexual phenotypes during only single reproductive periods are likely to provide inadequate estimates of male advantage in perennials.
Collapse
Affiliation(s)
- F Laugier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - P Vernet
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
| | - J Lepart
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - P -O Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - M Dufay
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Besnard G, Cheptou P, Debbaoui M, Lafont P, Hugueny B, Dupin J, Baali‐Cherif D. Paternity tests support a diallelic self-incompatibility system in a wild olive ( Olea europaea subsp. laperrinei, Oleaceae). Ecol Evol 2020; 10:1876-1888. [PMID: 32128122 PMCID: PMC7042767 DOI: 10.1002/ece3.5993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
Self-incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S-alleles from two distinct taxa, the possible artificial selection of self-compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross-genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self-fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.
Collapse
Affiliation(s)
| | - Pierre‐Olivier Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3MontpellierFrance
| | - Malik Debbaoui
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Pierre Lafont
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Bernard Hugueny
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Julia Dupin
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | | |
Collapse
|
3
|
Functional androdioecy in the ornamental shrub Osmanthus delavayi (Oleaceae). PLoS One 2019; 14:e0221898. [PMID: 31487330 PMCID: PMC6728067 DOI: 10.1371/journal.pone.0221898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/16/2019] [Indexed: 11/24/2022] Open
Abstract
Androdioecy is one of the rarest sexual systems among plants, characterized by males co-occurring with hermaphrodites. Osmanthus delavayi (Oleaceae), an ornamental shrub from southern China, is known to have both male and hermaphrodite individuals, but little is known regarding the breeding system of this species and whether it is functionally androdioecious, and how this potentially evolved. In this study, we explore the characteristics of the breeding system of O. delavayi through the study of phenology, sex ratio, floral organ morphology, pollen number, stigma receptivity, artificial pollination, pollinators, and gene flow within and between populations, while also discussing the evolution and maintenance of androdioecy within the genus. The proportion of males was less than 0.5 and the out-crossing index (OCI) was 5. Morphological androdioecy was observed, with hermaphrodite flowers having fertile pistils, while male flowers had degenerated pistils. Males and hermaphrodites both had large amounts of small and fertile pollen grains, although the pollen number of males was ca. 1.21 × more than that of hermaphrodites, and pollen was generally smaller. Self-pollination was found to produce a much lower fruit set than outcrossing under natural conditions. Gene flow between males and hermaphrodites within a population was greater (1.007) than that between populations (0.753). All these results indicate that O. delavayi is functionally androdioecious, which may be an intermediate state in the evolutionary transition from hermaphroditism to dioecy.
Collapse
|
4
|
Saumitou-Laprade P, Vernet P, Dowkiw A, Bertrand S, Billiard S, Albert B, Gouyon PH, Dufay M. Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae). Proc Biol Sci 2019; 285:rspb.2018.0004. [PMID: 29467269 DOI: 10.1098/rspb.2018.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
How flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash (Fraxinus excelsior), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype. The reproductive system in F. excelsior that was previously viewed as polygamy (co-occurrence of unisexuals and hermaphrodites with varying degrees of allocation to the male and female functions) and thus appears to actually behave as a subdioecious system. Hermaphrodites and females belong to one SI group and functionally reproduce as females, whereas males and male-biased hermaphrodites belong to the other SI group and are functionally males. Our results offer an alternative mechanism for the evolution of sexual specialization in flowering plants.
Collapse
Affiliation(s)
| | - Philippe Vernet
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France
| | - Arnaud Dowkiw
- INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | - Sylvain Bertrand
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | | | - Béatrice Albert
- Ecologie Systématique et Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Pierre-Henri Gouyon
- UMR MNHN CNRS 7205, Dept Systemat and Evolut, Museum Natl Hist Nat, 75005 Paris, France
| | - Mathilde Dufay
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,CEFE, Université Montpellier, CNRS, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
6
|
Saumitou-Laprade P, Vernet P, Vekemans X, Billiard S, Gallina S, Essalouh L, Mhaïs A, Moukhli A, El Bakkali A, Barcaccia G, Alagna F, Mariotti R, Cultrera NGM, Pandolfi S, Rossi M, Khadari B, Baldoni L. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol Appl 2017; 10:867-880. [PMID: 29151878 PMCID: PMC5680433 DOI: 10.1111/eva.12457] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self‐incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra‐ and interspecific stigma tests on 89 genotypes representative of species‐wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self‐incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross‐incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.
Collapse
Affiliation(s)
- Pierre Saumitou-Laprade
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Philippe Vernet
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Xavier Vekemans
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sylvain Billiard
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | - Sophie Gallina
- CNRSUMR 8198 Evo-Eco-Paleo Université de Lille - Sciences et Technologies Villeneuve d'Ascq France
| | | | - Ali Mhaïs
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRAUR Amélioration des Plantes Marrakech Morocco.,Laboratoire AgroBiotech L02B005 Faculté des Sciences et Techniques Guéliz University Cadi Ayyad Marrakech Morocco
| | | | - Ahmed El Bakkali
- INRAUR Amélioration des Plantes et Conservation des Ressources Phytogénétiques Meknès Morocco
| | - Gianni Barcaccia
- Laboratory of Genomics and Plant Breeding DAFNAE - University of Padova Legnaro PD Italy
| | - Fiammetta Alagna
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment CREATuriBA Italy.,CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | | | | | | | - Martina Rossi
- CNRInstitute of Biosciences and BioresourcesPerugiaItaly
| | - Bouchaïb Khadari
- Montpellier SupAgro UMR 1334 AGAP Montpellier France.,INRA/CBNMed UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP) Montpellier France
| | | |
Collapse
|
7
|
Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, Dommée B, Saumitou-Laprade P. Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. THE NEW PHYTOLOGIST 2016; 210:1408-17. [PMID: 26833140 DOI: 10.1111/nph.13872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 05/21/2023]
Abstract
A rare homomorphic diallelic self-incompatibility (DSI) system discovered in Phillyrea angustifolia (family Oleaceae, subtribe Oleinae) can promote the transition from hermaphroditism to androdioecy. If widespread and stable in Oleaceae, DSI may explain the exceptionally high rate of androdioecious species reported in this plant family. Here, we set out to determine whether DSI occurs in another Oleaceae lineage. We tested for DSI in subtribe Fraxininae, a lineage that diverged from subtribe Oleinae c. 40 million yr ago. We explored the compatibility relationships in Fraxinus ornus using 81 hermaphrodites and 25 males from one natural stand and two naturalized populations using intra- and interspecific stigma tests performed on F. ornus and P. angustifolia testers. We uncovered a DSI system with hermaphrodites belonging to one of two self-incompatibility (SI) groups and males compatible with both groups, making for a truly androdioecious reproductive system. The two human-founded populations contained only one of the two SI groups. Our results provide evidence for the evolutionary persistence of DSI. We discuss how its stability over time may have affected transitions to other sexual systems, such as dioecy.
Collapse
Affiliation(s)
- Philippe Vernet
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Pierre Lepercq
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Sylvain Billiard
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Angélique Bourceaux
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| | - Jacques Lepart
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Bertrand Dommée
- CEFE-UMR 5175 du CNRS, 1919 route de Mende, 34293, Montpellier Cedex, France
| | - Pierre Saumitou-Laprade
- Université de Lille - Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F59655, Villeneuve d'Ascq, France
| |
Collapse
|
8
|
Van de Paer C, Saumitou-Laprade P, Vernet P, Billiard S. The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J Theor Biol 2015; 371:90-101. [PMID: 25681148 DOI: 10.1016/j.jtbi.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Mating systems show two kinds of frequent transitions: from hermaphroditism to dioecy, gynodioecy or androdioecy, or from self-incompatibility (SI) to self-compatibility (SC). While models have mostly investigated these two kinds of transitions as independent, empirical observations suggest that, to some extent, they can evolve jointly. Here, we study the joint evolution and maintenance of SI and androdioecy or SI and gynodioecy by the means of phenotypic models. Our models focus on three parameters: the unisexuals׳ advantage relative to that of the hermaphrodites due to resource reallocation, inbreeding depression and the selfing rate. We assume no pollen limitation or discounting. We show that SI helps the maintenance of androdioecy, but favors the loss of gynodioecy, and also that androdioecy facilitates the maintenance of SI, whereas gynodioecy does not affect it. We finally investigate how gynodioecy and androdioecy may affect the diversification of SI groups, especially considering an evolutionary pathway through SC intermediates. We show that while androdioecy prevents the increase of the number of SI groups, under certain conditions of inbreeding depression and selfing rates, gynodioecy allows it.
Collapse
Affiliation(s)
- Céline Van de Paer
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Pierre Saumitou-Laprade
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Philippe Vernet
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Sylvain Billiard
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| |
Collapse
|
9
|
Billiard S, Husse L, Lepercq P, Godé C, Bourceaux A, Lepart J, Vernet P, Saumitou-Laprade P. Selfish male-determining element favors the transition from hermaphroditism to androdioecy. Evolution 2015; 69:683-93. [PMID: 25643740 DOI: 10.1111/evo.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
Abstract
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male-biased sex-ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.
Collapse
Affiliation(s)
- Sylvain Billiard
- Unité Evolution, Ecologie et Paléontologie (EEP), UMR CNRS 8198, Université des Sciences et Technologies de Lille-Lille1, F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Castric V, Billiard S, Vekemans X. Trait transitions in explicit ecological and genomic contexts: plant mating systems as case studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:7-36. [PMID: 24277293 DOI: 10.1007/978-94-007-7347-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Plants are astonishingly diverse in how they reproduce sexually, and the study of plant mating systems provides some of the most compelling cases of parallel and independent evolutionary transitions. In this chapter, we review how the massive amount of genomic data being produced is allowing long-standing predictions from ecological and evolutionary theory to be put to test. After a review of theoretical predictions about the importance of considering the genomic architecture of the mating system, we focus on a set of recent discoveries on how the mating system is controlled in a variety of model and non-model species. In parallel, genomic approaches have revealed the complex interaction between the evolution of genes controlling mating systems and genome evolution, both genome-wide and in the mating system control region. In several cases, major transitions in the mating system can be clearly associated with important ecological changes, hence illuminating an important interplay between ecological and genomic approaches. We also list a number of major unsolved questions that remain for the field, and highlight foreseeable conceptual developments that are likely to play a major role in our understanding of how plant mating systems evolve in Nature.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales (GEPV), UMR 8198; CNRS, Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France,
| | | | | |
Collapse
|