1
|
Foo SA, Byrne M. Reprint: Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2024; 97:11-58. [PMID: 39307554 DOI: 10.1016/bs.amb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Sherman CDH, Careau V, Gasparini C, Weston KJ, Evans JP. Population density effects on gamete traits and fertilisation dynamics under varying sperm environments in mussels. Ecol Evol 2024; 14:e11338. [PMID: 38698926 PMCID: PMC11063781 DOI: 10.1002/ece3.11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Gamete traits can vary widely among species, populations and individuals, influencing fertilisation dynamics and overall reproductive fitness. Sexual selection can play an important role in determining the evolution of gamete traits with local environmental conditions determining the strength and direction of sexual selection. Here, we test for signatures of post-mating selection on gamete traits in relation to population density, and possible interactive effects of population density and sperm concentration on sperm motility and fertilisation rates among natural populations of mussels. Our study shows that males from high-density populations produce smaller sperm compared with males from low-density populations, but we detected no effect of population density on egg size. Our results also reveal that females from low-density populations tended to exhibit lower fertilisation rates across a range of sperm concentrations, although this became less important as sperm concentration increased. Variances in fertilisation success were higher for females than males and the effect of gamete compatibility between males and females increases as sperm concentrations increase. These results suggest that local population density can influence gamete traits and fertilisation dynamics but also highlight the importance of phenotypic plasticity in governing sperm-egg interactions in a highly dynamic selective environment.
Collapse
Affiliation(s)
- Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Vincent Careau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - Kim J. Weston
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
3
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
4
|
Kekäläinen J, Oskoei P, Janhunen M, Koskinen H, Kortet R, Huuskonen H. Sperm pre-fertilization thermal environment shapes offspring phenotype and performance. ACTA ACUST UNITED AC 2018; 221:jeb.181412. [PMID: 30171097 DOI: 10.1242/jeb.181412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
Abstract
The sperm pre-fertilization environment has recently been suggested to mediate remarkable transgenerational consequences for offspring phenotype (transgenerational plasticity, TGB), but the adaptive significance of the process has remained unclear. Here, we studied the transgenerational effects of sperm pre-fertilization thermal environment in a cold-adapted salmonid, the European whitefish (Coregonus lavaretus). We used a full-factorial breeding design where the eggs of five females were fertilized with the milt of 10 males that had been pre-incubated at two different temperatures (3.5°C and 6.5°C) for 15 h prior to fertilization. Thermal manipulation did not affect sperm motility, cell size, fertilization success or embryo mortality. However, offspring that were fertilized with 6.5°C-exposed milt were smaller and had poorer swimming performance than their full-siblings that had been fertilized with the 3.5°C-exposed milt. Furthermore, the effect of milt treatment on embryo mortality varied among different females (treatment×female interaction) and male-female combinations (treatment×female×male interaction). Together, these results indicate that sperm pre-fertilization thermal environment shapes offspring phenotype and post-hatching performance and modifies both the magnitude of female (dam) effects and the compatibility of the gametes. Generally, our results suggest that short-term changes in sperm thermal conditions may have negative impact for offspring fitness. Thus, sperm thermal environment may have an important role in determining the adaptation potential of organisms to climate change. Detailed mechanism(s) behind our findings require further attention.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Párástu Oskoei
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland.,Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Survontie 9, FI-40500 Jyväskylä, Finland
| | - Heikki Koskinen
- Natural Resources Institute Finland (Luke), Huuhtajantie 160, FI-72210 Tervo, Finland
| | - Raine Kortet
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Hannu Huuskonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
5
|
Rudin-Bitterli TS, Mitchell NJ, Evans JP. Environmental Stress Increases the Magnitude of Nonadditive Genetic Variation in Offspring Fitness in the Frog Crinia georgiana. Am Nat 2018; 192:461-478. [DOI: 10.1086/699231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Evol Appl 2017; 10:267-275. [PMID: 28250811 PMCID: PMC5322406 DOI: 10.1111/eva.12447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Dustin J. Marshall
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Keyne Monro
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| |
Collapse
|
7
|
Foo SA, Byrne M. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2016; 74:69-116. [PMID: 27573050 DOI: 10.1016/bs.amb.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- S A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - M Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Lymbery RA, Kennington WJ, Evans JP. Fluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs. Sci Rep 2016; 6:22689. [PMID: 26941059 PMCID: PMC4778040 DOI: 10.1038/srep22689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patterns of mitochondrial inheritance. We present a method utilising both properties in the blue mussel, Mytilus galloprovincialis. In mytilids and many other bivalves, both sperm and egg mitochondria are inherited. We exploit this, using the vital mitochondrial dye MitoTracker, to track the success of sperm from individual males when they compete with those from rivals to fertilise eggs. We confirm that dying mitochondria has no adverse effects on in vitro measures of sperm motility (reflecting mitochondrial energetics) or sperm competitive fertilisation success. Therefore, we propose the technique as a powerful and logistically tractable tool for sperm competition studies. Importantly, our method allows the competitive fertilisation success of sperm from any male to be measured directly and disentangled from confounding effects of post-fertilisation embryo survival. Moreover, the mitochondrial dye has broader applications in taxa without paternal mitochondrial inheritance, for example by tracking the dynamics of competing ejaculates prior to fertilisation.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| |
Collapse
|
9
|
Sherman CDH, Ab Rahim ES, Olsson M, Careau V. The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecol Evol 2015; 5:4354-64. [PMID: 26664684 PMCID: PMC4667825 DOI: 10.1002/ece3.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022] Open
Abstract
The genetic benefits individuals receive from mate choice have been the focus of numerous studies, with several showing support for both intrinsic genetic benefits and compatibility effects on fertilization success and offspring viability. However, the robustness of these effects have rarely been tested across an ecologically relevant environmental gradient. In particular, sperm environment is a crucial factor determining fertilization success in many species, especially those with external fertilization. Here, we test the importance of sperm environment in mediating compatibility‐based selection on fertilization using a factorial breeding design. We detected a significant intrinsic male effect on fertilization success at only one of four sperm concentrations. Compatibility effects were significant at the two highest sperm concentrations and, interestingly, the magnitude of the compatibility effect consistently increased with sperm concentration. This suggests that females are able to modify the probability of sperm–egg fusion as the amount of sperm available increases.
Collapse
Affiliation(s)
- Craig D H Sherman
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| | - Emi S Ab Rahim
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia ; School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mats Olsson
- School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Vincent Careau
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
10
|
Garcia-Gonzalez F, Yasui Y, Evans JP. Mating portfolios: bet-hedging, sexual selection and female multiple mating. Proc Biol Sci 2015; 282:20141525. [PMID: 25411448 DOI: 10.1098/rspb.2014.1525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyandry (female multiple mating) has profound evolutionary and ecological implications. Despite considerable work devoted to understanding why females mate multiply, we currently lack convincing empirical evidence to explain the adaptive value of polyandry. Here, we provide a direct test of the controversial idea that bet-hedging functions as a risk-spreading strategy that yields multi-generational fitness benefits to polyandrous females. Unfortunately, testing this hypothesis is far from trivial, and the empirical comparison of the across-generations fitness payoffs of a polyandrous (bet hedger) versus a monandrous (non-bet hedger) strategy has never been accomplished because of numerous experimental constraints presented by most 'model' species. In this study, we take advantage of the extraordinary tractability and versatility of a marine broadcast spawning invertebrate to overcome these challenges. We are able to simulate multi-generational (geometric mean) fitness among individual females assigned simultaneously to a polyandrous and monandrous mating strategy. Our approaches, which separate and account for the effects of sexual selection and pure bet-hedging scenarios, reveal that bet-hedging, in addition to sexual selection, can enhance evolutionary fitness in multiply mated females. In addition to offering a tractable experimental approach for addressing bet-hedging theory, our study provides key insights into the evolutionary ecology of sexual interactions.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, s/n, Isla de la Cartuja 41092, Sevilla, Spain Centre for Evolutionary Biology, University of Western Australia, School of Animal Biology M092, Nedlands 6009, Western Australia
| | - Yukio Yasui
- Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Jonathan P Evans
- Centre for Evolutionary Biology, University of Western Australia, School of Animal Biology M092, Nedlands 6009, Western Australia
| |
Collapse
|
11
|
Evolution of Marine Organisms under Climate Change at Different Levels of Biological Organisation. WATER 2014. [DOI: 10.3390/w6113545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|