1
|
Olito C, Ponnikas S, Hansson B, Abbott JK. Consequences of partially recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes1. Evolution 2024; 78:1499-1510. [PMID: 38853722 DOI: 10.1093/evolut/qpae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024]
Abstract
The evolution of suppressed recombination between sex chromosomes is widely hypothesized to be driven by sexually antagonistic selection (SA), where tighter linkage between the sex-determining gene(s) and nearby SA loci is favored when it couples male-beneficial alleles to the proto-Y chromosome, and female-beneficial alleles to the proto-X. Although difficult to test empirically, the SA selection hypothesis overshadows several alternatives, including an incomplete but often-repeated "sheltering" hypothesis which suggests that expansion of the sex-linked region (SLR) reduces the homozygous expression of deleterious mutations at selected loci. Here, we use population genetic models to evaluate the consequences of partially recessive deleterious mutational variation for the evolution of otherwise neutral chromosomal inversions expanding the SLR on proto-Y chromosomes. Both autosomal and SLR-expanding inversions face a race against time: lightly-loaded inversions are initially beneficial, but eventually become deleterious as they accumulate new mutations, after which their chances of fixing become negligible. In contrast, initially unloaded inversions eventually become neutral as their deleterious load reaches the same equilibrium as non-inverted haplotypes. Despite the differences in inheritance and indirect selection, SLR-expanding inversions exhibit similar evolutionary dynamics to autosomal inversions over many biologically plausible parameter conditions. Differences emerge when the population average mutation load is quite high; in this case large autosomal inversions that are lucky enough to be mutation-free can rise to intermediate to high frequencies where selection in homozygotes becomes important (Y-linked inversions never appear as homozygous karyotypes); conditions requiring either high mutation rates, highly recessive deleterious mutations, weak selection, or a combination thereof.
Collapse
Affiliation(s)
- Colin Olito
- Department of Biology, Lund University, Lund, Sweden
| | - Suvi Ponnikas
- Department of Biology, Lund University, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Alfieri JM, Jonika MM, Dulin JN, Blackmon H. Tempo and Mode of Genome Structure Evolution in Insects. Genes (Basel) 2023; 14:336. [PMID: 36833264 PMCID: PMC9957073 DOI: 10.3390/genes14020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The division of the genome into discrete chromosomes is a fundamental characteristic of eukaryotic life. Insect taxonomists' early adoption of cytogenetics has led to an incredible amount of data describing genome structure across insects. In this article, we synthesize data from thousands of species and use biologically realistic models to infer the tempo and mode of chromosome evolution among insect orders. Our results show that orders vary dramatically in the overall rate of chromosome number evolution (a proxy of genome structural stability) and the pattern of evolution (e.g., the balance between fusions and fissions). These findings have important implications for our understanding of likely modes of speciation and offer insight into the most informative clades for future genome sequencing.
Collapse
Affiliation(s)
- James M. Alfieri
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| | - Michelle M. Jonika
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Olito C, Ponnikas S, Hansson B, Abbott JK. Consequences of partially recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes. Evolution 2022; 76:1320-1330. [PMID: 35482933 PMCID: PMC9324078 DOI: 10.1111/evo.14496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/15/2022] [Indexed: 01/21/2023]
Abstract
The evolution of suppressed recombination between sex chromosomes is widely hypothesized to be driven by sexually antagonistic selection (SA), where tighter linkage between the sex-determining gene(s) and nearby SA loci is favored when it couples male-beneficial alleles to the proto-Y chromosome, and female-beneficial alleles to the proto-X. Despite limited empirical evidence, the SA selection hypothesis overshadows several alternatives, including an incomplete but often-repeated "sheltering hypothesis" that suggests that expansion of the sex-linked region (SLR) reduces homozygous expression of partially recessive deleterious mutations at selected loci. Here, we use population genetic models to evaluate the consequences of deleterious mutational variation for the evolution of neutral chromosomal inversions expanding the SLR on proto-Y chromosomes. We find that SLR-expanding inversions face a race against time: lightly loaded inversions are initially beneficial, but eventually become deleterious as they accumulate new mutations, and must fix before this window of opportunity closes. The outcome of this race is strongly influenced by inversion size, the mutation rate, and the dominance coefficient of deleterious mutations. Yet, small inversions have elevated fixation probabilities relative to neutral expectations for biologically plausible parameter values. Our results demonstrate that deleterious genetic variation can plausibly drive recombination suppression in small steps and would be most consistent with empirical patterns of small evolutionary strata or gradual recombination arrest.
Collapse
Affiliation(s)
- Colin Olito
- Department of BiologyLund UniversityLund22362Sweden
| | - Suvi Ponnikas
- Department of BiologyLund UniversityLund22362Sweden
- Current address: Ecology and Genetics Research UnitUniversity of OuluOulu90014Finland
| | | | | |
Collapse
|
5
|
Monteiro B, Arenas M, Prata MJ, Amorim A. Evolutionary dynamics of the human pseudoautosomal regions. PLoS Genet 2021; 17:e1009532. [PMID: 33872316 PMCID: PMC8084340 DOI: 10.1371/journal.pgen.1009532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/29/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Recombination between the X and Y human sex chromosomes is limited to the two pseudoautosomal regions (PARs) that present quite distinct evolutionary origins. Despite the crucial importance for male meiosis, genetic diversity patterns and evolutionary dynamics of these regions are poorly understood. In the present study, we analyzed and compared the genetic diversity of the PAR regions using publicly available genomic sequences encompassing both PAR1 and PAR2. Comparisons were performed through allele diversities, linkage disequilibrium status and recombination frequencies within and between X and Y chromosomes. In agreement with previous studies, we confirmed the role of PAR1 as a male-specific recombination hotspot, but also observed similar characteristic patterns of diversity in both regions although male recombination occurs at PAR2 to a much lower extent (at least one recombination event at PAR1 and in ≈1% in normal male meioses at PAR2). Furthermore, we demonstrate that both PARs harbor significantly different allele frequencies between X and Y chromosomes, which could support that recombination is not sufficient to homogenize the pseudoautosomal gene pool or is counterbalanced by other evolutionary forces. Nevertheless, the observed patterns of diversity are not entirely explainable by sexually antagonistic selection. A better understanding of such processes requires new data from intergenerational transmission studies of PARs, which would be decisive on the elucidation of PARs evolution and their role in male-driven heterosomal aneuploidies.
Collapse
Affiliation(s)
- Bruno Monteiro
- Institute of Investigation and Innovation in Health (i3S). University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- CINBIO (Biomedical Research Centre), University of Vigo, Vigo, Spain
| | - Maria João Prata
- Institute of Investigation and Innovation in Health (i3S). University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| | - António Amorim
- Institute of Investigation and Innovation in Health (i3S). University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Yazdi HP, Silva WTAF, Suh A. Why Do Some Sex Chromosomes Degenerate More Slowly Than Others? The Odd Case of Ratite Sex Chromosomes. Genes (Basel) 2020; 11:E1153. [PMID: 33007827 PMCID: PMC7601716 DOI: 10.3390/genes11101153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The hallmark of sex chromosome evolution is the progressive suppression of recombination which leads to subsequent degeneration of the non-recombining chromosome. In birds, species belonging to the two major clades, Palaeognathae (including tinamous and flightless ratites) and Neognathae (all remaining birds), show distinctive patterns of sex chromosome degeneration. Birds are female heterogametic, in which females have a Z and a W chromosome. In Neognathae, the highly-degenerated W chromosome seems to have followed the expected trajectory of sex chromosome evolution. In contrast, among Palaeognathae, sex chromosomes of ratite birds are largely recombining. The underlying reason for maintenance of recombination between sex chromosomes in ratites is not clear. Degeneration of the W chromosome might have halted or slowed down due to a multitude of reasons ranging from selective processes, such as a less pronounced effect of sexually antagonistic selection, to neutral processes, such as a slower rate of molecular evolution in ratites. The production of genome assemblies and gene expression data for species of Palaeognathae has made it possible, during recent years, to have a closer look at their sex chromosome evolution. Here, we critically evaluate the understanding of the maintenance of recombination in ratites in light of the current data. We conclude by highlighting certain aspects of sex chromosome evolution in ratites that require further research and can potentially increase power for the inference of the unique history of sex chromosome evolution in this lineage of birds.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK;
- Department of Organismal Biology—Systematic Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. Evolutionary Dynamics of Sex Chromosomes of Paleognathous Birds. Genome Biol Evol 2020; 11:2376-2390. [PMID: 31329234 PMCID: PMC6735826 DOI: 10.1093/gbe/evz154] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Standard models of sex chromosome evolution propose that recombination suppression leads to the degeneration of the heterogametic chromosome, as is seen for the Y chromosome in mammals and the W chromosome in most birds. Unlike other birds, paleognaths (ratites and tinamous) possess large nondegenerate regions on their sex chromosomes (PARs or pseudoautosomal regions). It remains unclear why these large PARs are retained over >100 Myr, and how this retention impacts the evolution of sex chromosomes within this system. To address this puzzle, we analyzed Z chromosome evolution and gene expression across 12 paleognaths, several of whose genomes have recently been sequenced. We confirm at the genomic level that most paleognaths retain large PARs. As in other birds, we find that all paleognaths have incomplete dosage compensation on the regions of the Z chromosome homologous to degenerated portions of the W (differentiated regions), but we find no evidence for enrichments of male-biased genes in PARs. We find limited evidence for increased evolutionary rates (faster-Z) either across the chromosome or in differentiated regions for most paleognaths with large PARs, but do recover signals of faster-Z evolution in tinamou species with mostly degenerated W chromosomes, similar to the pattern seen in neognaths. Unexpectedly, in some species, PAR-linked genes evolve faster on average than genes on autosomes, suggested by diverse genomic features to be due to reduced efficacy of selection in paleognath PARs. Our analysis shows that paleognath Z chromosomes are atypical at the genomic level, but the evolutionary forces maintaining largely homomorphic sex chromosomes in these species remain elusive.
Collapse
Affiliation(s)
- Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Timothy B Sackton
- Informatics Group, Division of Science, Harvard University
- Corresponding author: E-mail:
| |
Collapse
|
8
|
Nielsen SV, Pinto BJ, Guzmán-Méndez IA, Gamble T. First Report of Sex Chromosomes in Night Lizards (Scincoidea: Xantusiidae). J Hered 2020; 111:307-317. [DOI: 10.1093/jhered/esaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract
Squamate reptiles (lizards, snakes, and amphibians) are an outstanding group for studying sex chromosome evolution—they are old, speciose, geographically widespread, and exhibit myriad sex-determining modes. Yet, the vast majority of squamate species lack heteromorphic sex chromosomes. Cataloging the sex chromosome systems of species lacking easily identifiable, heteromorphic sex chromosomes, therefore, is essential before we are to fully understand the evolution of vertebrate sex chromosomes. Here, we use restriction site-associated DNA sequencing (RADseq) to classify the sex chromosome system of the granite night lizard, Xantusia henshawi. RADseq is an effective alternative to traditional cytogenetic methods for determining a species’ sex chromosome system (i.e., XX/XY or ZZ/ZW), particularly in taxa with non-differentiated sex chromosomes. Although many xantusiid lineages have been karyotyped, none possess heteromorphic sex chromosomes. We identified a ZZ/ZW sex chromosome system in X. henshawi—the first such data for this family. Furthermore, we report that the X. henshawi sex chromosome contains fragments of genes found on Gallus gallus chromosomes 7, 12, and 18 (which are homologous to Anolis carolinensis chromosome 2), the first vertebrate sex chromosomes to utilize this linkage group.
Collapse
Affiliation(s)
- Stuart V Nielsen
- Florida Museum of Natural History, University of Florida, Gainesville, FL
- Department of Biological Sciences, Marquette University, Milwaukee, WI
| | - Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN
- Milwaukee Public Museum, Milwaukee, WI
| |
Collapse
|
9
|
Otto SP. Evolutionary potential for genomic islands of sexual divergence on recombining sex chromosomes. THE NEW PHYTOLOGIST 2019; 224:1241-1251. [PMID: 31361905 DOI: 10.1111/nph.16083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Differentiated sex chromosomes are thought to develop through the accumulation of polymorphisms at loci subject to opposing selection between males and females, and/or between haploids and diploids. As sex chromosomes differentiate, reduced recombination becomes favored between selected loci and the sex-determining region, strengthening genetic associations between alleles favored in a sex and the corresponding sex chromosome. Here a model is analyzed to explore whether polymorphism at one sexually or ploidally antagonistic locus facilitates the spread of rare alleles at other loci experiencing antagonistic selection, promoting further differentiation of the sex chromosomes. It is found that antagonistic polymorphisms can spread and capture other such loci, building 'genomic islands' of differentiation on sex chromosomes, but the conditions are very restrictive, requiring the loci to be strongly selected, tightly linked and distant from the sex-determining region. Epistatic interactions can facilitate the promotion of polymorphism among selected loci, but only if preferentially favoring heterozygotes. Although these results apply to any taxa, plants provide a fertile ground for testing these and related theories given the recurrent evolutionary transitions to dioecy, which provide multiple opportunities to track the early evolution of sex chromosomes.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
10
|
Connallon T, Olito C, Dutoit L, Papoli H, Ruzicka F, Yong L. Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0423. [PMID: 30150221 DOI: 10.1098/rstb.2017.0423] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Spatially varying selection with gene flow can favour the evolution of inversions that bind locally adapted alleles together, facilitate local adaptation and ultimately drive genomic divergence between species. Several studies have shown that the rates of spread and establishment of new inversions capturing locally adaptive alleles depend on a suite of evolutionary factors, including the strength of selection for local adaptation, rates of gene flow and recombination, and the deleterious mutation load carried by inversions. Because the balance of these factors is expected to differ between X (or Z) chromosomes and autosomes, opportunities for inversion evolution are likely to systematically differ between these genomic regions, though such scenarios have not been formally modelled. Here, we consider the evolutionary dynamics of X-linked and autosomal inversions in populations evolving at a balance between migration and local selection. We identify three factors that lead to asymmetric rates of X-linked and autosome inversion establishment: (1) sex-biased migration, (2) dominance of locally adapted alleles and (3) chromosome-specific deleterious mutation loads. This theory predicts an elevated rate of fixation, and depressed opportunities for polymorphism, for X-linked inversions. Our survey of data on the genomic distribution of polymorphic and fixed inversions supports both theoretical predictions.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia
| | - Colin Olito
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia.,Department of Biology, Section for Evolutionary Ecology, Lund University, 22362 Lund, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden.,Department of Zoology, University of Otago, 9054 Dunedin, New Zealand
| | - Homa Papoli
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Filip Ruzicka
- Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
11
|
Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes ( Microbotryum lychnidis-dioicae). G3-GENES GENOMES GENETICS 2019; 9:1987-1998. [PMID: 31015196 PMCID: PMC6553529 DOI: 10.1534/g3.119.400242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recombination suppression on sex chromosomes often extends in a stepwise manner, generating evolutionary strata of differentiation between sex chromosomes. Sexual antagonism is a widely accepted explanation for evolutionary strata, postulating that sets of genes beneficial in only one sex are successively linked to the sex-determining locus. The anther-smut fungus Microbotryum lychnidis-dioicae has mating-type chromosomes with evolutionary strata, only some of which link mating-type genes. Male and female roles are non-existent in this fungus, but mating-type antagonistic selection can also generate evolutionary strata, although the life cycle of the fungus suggests it should be restricted to few traits. Here, we tested the hypothesis that mating-type antagonism may have triggered recombination suppression beyond mating-type genes in M. lychnidis-dioicae by searching for footprints of antagonistic selection in evolutionary strata not linking mating-type loci. We found that these evolutionary strata (i) were not enriched in genes upregulated in the haploid phase, where cells are of alternative mating types, (ii) carried no gene differentially expressed between mating types, and (iii) carried no genes displaying footprints of specialization in terms of protein sequences (dN/dS) between mating types after recommended filtering. Without filtering, eleven genes showed signs of positive selection in the strata not linking mating-type genes, which constituted an enrichment compared to autosomes, but their functions were not obviously involved in antagonistic selection. Thus, we found no strong evidence that antagonistic selection has contributed to extending recombination suppression beyond mating-type genes. Alternative hypotheses should therefore be explored to improve our understanding of the sex-related chromosome evolution.
Collapse
|
12
|
Ponnikas S, Sigeman H, Abbott JK, Hansson B. Why Do Sex Chromosomes Stop Recombining? Trends Genet 2018; 34:492-503. [DOI: 10.1016/j.tig.2018.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
|
13
|
Scott MF, Osmond MM, Otto SP. Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biol 2018; 16:e2005609. [PMID: 29940019 PMCID: PMC6042799 DOI: 10.1371/journal.pbio.2005609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Sex determination is remarkably dynamic; many taxa display shifts in the location of sex-determining loci or the evolution of entirely new sex-determining systems. Predominant theories for why we observe such transitions generally conclude that novel sex-determining systems are favoured by selection if they equalise the sex ratio or increase linkage with a locus that experiences different selection in males versus females. We use population genetic models to extend these theories in two ways: (1) We consider the dynamics of loci very tightly linked to the ancestral sex-determining loci, e.g., within the nonrecombining region of the ancestral sex chromosomes. Variation at such loci can favour the spread of new sex-determining systems in which the heterogametic sex changes (XY to ZW or ZW to XY) and the new sex-determining region is less closely linked (or even unlinked) to the locus under selection. (2) We consider selection upon haploid genotypes either during gametic competition (e.g., pollen competition) or meiosis (i.e., nonmendelian segregation), which can cause the zygotic sex ratio to become biased. Haploid selection can drive transitions between sex-determining systems without requiring selection to act differently in diploid males versus females. With haploid selection, we find that transitions between male and female heterogamety can evolve so that linkage with the sex-determining locus is either strengthened or weakened. Furthermore, we find that sex ratio biases may increase or decrease with the spread of new sex chromosomes, which implies that transitions between sex-determining systems cannot be simply predicted by selection to equalise the sex ratio. In fact, under many conditions, we find that transitions in sex determination are favoured equally strongly in cases in which the sex ratio bias increases or decreases. Overall, our models predict that sex determination systems should be highly dynamic, particularly when haploid selection is present, consistent with the evolutionary lability of this trait in many taxa.
Collapse
Affiliation(s)
- Michael Francis Scott
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Miles Osmond
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Perin Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Nielsen SV, Banks JL, Diaz RE, Trainor PA, Gamble T. Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae). J Evol Biol 2018; 31:484-490. [DOI: 10.1111/jeb.13242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- S. V. Nielsen
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
| | - J. L. Banks
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
| | - R. E. Diaz
- Department of Biological Sciences; Southeastern Louisiana University; Hammond LA USA
- Natural History Museum of Los Angeles County; Los Angeles CA USA
| | - P. A. Trainor
- Stowers Institute for Medical Research; Kansas City MO USA
- Department of Anatomy and Cell Biology; Medical Center; University of Kansas; Kansas City KS USA
| | - T. Gamble
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
- Bell Museum of Natural History; University of Minnesota; Saint Paul MN USA
- Milwaukee Public Museum; Milwaukee WI USA
| |
Collapse
|
15
|
Blackmon H, Brandvain Y. Long-Term Fragility of Y Chromosomes Is Dominated by Short-Term Resolution of Sexual Antagonism. Genetics 2017; 207:1621-1629. [PMID: 29021279 PMCID: PMC5714469 DOI: 10.1534/genetics.117.300382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
The evolution of heteromorphic sex chromosomes has fascinated biologists, inspiring theoretical models, experimental studies, and studies of genome structure. This work has produced a clear model, in which heteromorphic sex chromosomes result from repeated fixations of inversions (or other recombination suppression mechanisms) that tether sexually antagonistic alleles to sex-determining regions, followed by the degeneration of these regions induced by the lack of sex chromosome recombination in the heterogametic sex. However, current models do not predict if inversions are expected to preferentially accumulate on one sex-chromosome or another, and do not address if inversions can accumulate even when they cause difficulties in pairing between heteromorphic chromosomes in the heterogametic sex increasing aneuploidy or meiotic arrest. To address these questions, we developed a population genetic model in which the sex chromosome aneuploidy rate is elevated when males carry an inversion on either the X or Y chromosome. We show that inversions fix more easily when male-beneficial alleles are dominant, and that inversions on the Y chromosome fix with lower selection coefficients than comparable X chromosome inversions. We further show that sex-chromosome inversions can often invade and fix despite causing a substantial increase in the risk of aneuploidy. As sexual antagonism can lead to the fixation of inversions that increase sex chromosomes aneuploidy (which underlies genetic diseases including Klinefelter and Turner syndrome in humans) selection could subsequently favor diverse mechanisms to reduce aneuploidy-including alternative meiotic mechanisms, translocations to, and fusions with, the sex chromosomes, and sex chromosome turnover.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Yaniv Brandvain
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
16
|
Haploid Selection Favors Suppressed Recombination Between Sex Chromosomes Despite Causing Biased Sex Ratios. Genetics 2017; 207:1631-1649. [PMID: 29051194 DOI: 10.1534/genetics.117.300062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
To date, research on the evolution of sex chromosomes has focused on sexually antagonistic selection among diploids, which has been shown to be a potent driver of the strata and reduced recombination that characterize many sex chromosomes. However, significant selection can also occur on haploid genotypes during less conspicuous life cycle stages, e.g., competition among sperm/pollen or meiotic drive during gamete/spore production. These haploid selective processes are typically sex-specific, e.g., gametic/gametophytic competition typically occurs among sperm/pollen, and meiotic drive typically occurs during either spermatogenesis or oogenesis. We use models to investigate whether sex-specific selection on haploids could drive the evolution of recombination suppression on the sex chromosomes, as has been demonstrated for sex-specific selection among diploids. A potential complication is that zygotic sex-ratios become biased when haploid selected loci become linked to the sex-determining region because the zygotic sex ratio is determined by the relative number and fitness of X- vs. Y-bearing sperm. Despite causing biased zygotic sex-ratios, we find that a period of sex-specific haploid selection generally favors recombination suppression on the sex chromosomes. Suppressed recombination is favored because it allows associations to build up between haploid-beneficial alleles and the sex that experiences haploid selection most often (e.g., pollen beneficial alleles become strongly associated with the male determining region, Y or Z). Haploid selected loci can favor recombination suppression even in the absence of selective differences between male and female diploids. Overall, we expand our view of the sex-specific life cycle stages that can drive sex chromosome evolution to include gametic competition and meiotic drive. Based on our models, sex chromosomes should become enriched for genes that experience haploid selection, as is expected for genes that experience sexually antagonistic selection. Thus, we generate a number of predictions that can be evaluated in emerging sex chromosome systems.
Collapse
|
17
|
Transition in sexual system and sex chromosome evolution in the tadpole shrimp Triops cancriformis. Heredity (Edinb) 2015; 115:37-46. [PMID: 25757406 PMCID: PMC4815504 DOI: 10.1038/hdy.2015.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Transitions in sexual system and reproductive mode may affect the course of sex chromosome evolution, for instance by altering the strength of sexually antagonistic selection. However, there have been few studies of sex chromosomes in systems where such transitions have been documented. The European tadpole shrimp, Triops cancriformis, has undergone a transition from dioecy to androdioecy (a sexual system where hermaphrodites and males coexist), offering an excellent opportunity to test the impact of this transition on the evolution of sex chromosomes. To identify sex-linked markers, to understand mechanisms of sex determination and to investigate differences between sexual systems, we carried out a genome-wide association study using restriction site-associated DNA sequencing (RAD-seq) of 47 males, females and hermaphrodites from one dioecious and one androdioecious population. We analysed 22.9 Gb of paired-end sequences and identified and scored >3000 high coverage novel genomic RAD markers. Presence–absence of markers, single-nucleotide polymorphism association and read depth identified 52 candidate sex-linked markers. We show that sex is genetically determined in T. cancriformis, with a ZW system conserved across dioecious and androdioecious populations and that hermaphrodites have likely evolved from females. We also show that the structure of the sex chromosomes differs strikingly, with a larger sex-linked region in the dioecious population compared with the androdioecious population.
Collapse
|
18
|
Immler S, Otto SP. The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 2015; 69:694-708. [PMID: 25582562 DOI: 10.1111/evo.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022]
Abstract
The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings.
Collapse
Affiliation(s)
- Simone Immler
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | | |
Collapse
|
19
|
Schwander T, Marais G, Roze D. Sex uncovered: the evolutionary biology of reproductive systems. J Evol Biol 2015; 27:1287-91. [PMID: 24975885 DOI: 10.1111/jeb.12424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Mol Biol Evol 2015; 32:1296-309. [DOI: 10.1093/molbev/msv023] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|