1
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Prekas P, Terblanche JS, Hahn DA, Papadopoulos NT. Age and mating status have complex but modest effects on the critical thermal limits of adult Mediterranean fruit flies from geographically divergent populations. J Therm Biol 2024; 126:104013. [PMID: 39586117 DOI: 10.1016/j.jtherbio.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Collapse
Affiliation(s)
- Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Panagiota Koskinioti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Kostas D Zarpas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Paraschos Prekas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
2
|
Hafker P, Thompson LM, Walter JA, Parry D, Grayson KL. Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect. INSECT SCIENCE 2024; 31:1930-1942. [PMID: 38516807 PMCID: PMC11632292 DOI: 10.1111/1744-7917.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.
Collapse
Affiliation(s)
- Petra Hafker
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of EntomologyCornell UniversityIthacaNYUSA
| | - Lily M. Thompson
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSCUSA
| | - Jonathan A. Walter
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Dylan Parry
- Department of Environmental Biology, State University of New YorkCollege of Environmental Science and ForestrySyracuseNYUSA
| | | |
Collapse
|
3
|
Izadi H, Cuthbert RN, Haubrock PJ, Renault D. Advances in understanding Lepidoptera cold tolerance. J Therm Biol 2024; 125:103992. [PMID: 39418723 DOI: 10.1016/j.jtherbio.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Division of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000, Rennes, France
| |
Collapse
|
4
|
León-Quinto T, Antón-Ruiz N, Madrigal R, Serna A. Experimental evidence of a Neotropical pest insect moderately tolerant to complete freezing. J Therm Biol 2024; 123:103939. [PMID: 39116623 DOI: 10.1016/j.jtherbio.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Due to climate change, many regions are experiencing progressively milder winters. Consequently, pest insects from warm regions, particularly those with some tolerance to low temperatures, could expand their geographic range into these traditionally colder regions. The palm borer moth (Paysandisia archon) is a Neotropical insect that in recent decades has reached Europe and Asia as one of the worst pests of palm trees. Little is known about its ability to tolerate moderately cold winters and, therefore, to colonize new areas. In this work, we characterized the cold tolerance of Paysandisia archon by measuring its thermal limits: median lethal-temperature, LT50, chill-coma onset temperature, CTmin, supercooling point, SCP, freezing time and freezing survival. We found that this species was able to survive short periods of complete freezing, with survival rates of 87% after a 30-min freezing exposure, and 33% for a 1 h-exposure. It is then a moderately freeze-tolerant species, in contrast to all other lepidopterans native to warm areas, which are freeze-intolerant. Additionally, we investigated whether this insect improved its cold tolerance after either short or long pre-exposure to sub-lethal low temperatures. To that end, we studied potential changes in the main thermo-tolerance parameters and, using X-ray Computed Tomography, also in the morphological components of pretreated animals. We found that short pre-exposures did not imply significant changes in the SCP and CTmin values. In contrast, larvae with long pretreatments improved their survival to both freezing and low temperatures, and required longer times for complete freezing than the other groups. These long-term pre-exposed larvae also presented several morphological changes, including a reduction in water content that probably explained, at least in part, their longer freezing time and higher freezing survival. Our results represent the first cold tolerance characterization of this pest insect, which could be relevant to better design strategies to combat it.
Collapse
Affiliation(s)
- Trinidad León-Quinto
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Noelia Antón-Ruiz
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Roque Madrigal
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Arturo Serna
- Departamento de Física Aplicada, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| |
Collapse
|
5
|
Thermal tolerance of the rosy apple aphid Dysaphis plantaginea and its parasitoids: Effect of low temperatures on some fitness activities of Aphidius matricariae. J Therm Biol 2022; 110:103377. [DOI: 10.1016/j.jtherbio.2022.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/20/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
|
6
|
Ngomane NC, Terblanche JS, Conlong DE. The Addition of Sterols and Cryoprotectants to Optimize a Diet Developed for Eldana saccharina Walker (Lepidoptera: Pyralidae) Using the Carcass Milling Technique. INSECTS 2022; 13:insects13040314. [PMID: 35447756 PMCID: PMC9029491 DOI: 10.3390/insects13040314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Various combinations and concentrations of cholesterol (C) and stigmasterol (S) were added into a base diet developed for Eldana saccharina. Survival of inoculated neonate was high on all diets (>92% at day 20 and >95% at day 27). Fastest larval development occurred on the minimum specification (MS) (+1.0 gS) and MS (+0.2 gC: 0.2 gS) diets (72 and 70% pupation respectively at day 20). Significantly slower development (15% pupation) occurred on the control diet at day 20. Female pupal weight increased when larvae fed on the MS (+0.1 gC), (+0.1 gS) and (+0.2 gC:0.2 gS) diets (0.2143 ± 0.00 g, 0.2271 ± 0.01 g and 0.2252 ± 0.01 g, respectively) as compared with the control diet (0.1886 ± 0.00 g). Adult emergence was significantly higher (100%) from the MS (+0.1 gS) and MS (+0.2 gC:0.2 gS) diets, as compared with the remaining sterol (95%) and control diets (97%). To potentially increase E. saccharina’s cold tolerance, inclusion of cryoprotectants L-proline (P) and trehalose (T) into the MS diet was investigated. Males from the MS (0.2 gP:0.2 gT), MS (0.5 gP:0.5 gT) and MS (1.0 gT) diets recovered fastest from chill coma treatment (204 ± 44 s, 215 ± 7 s and 215 ± 9 s, respectively) than those from the remaining cryoprotectant diets (305 ± 22 s). The addition of cryoprotectants severely reduced female fertility (<44%) when mated with non-chill coma exposed males. In contrast, eggs from females not exposed to chilling treatment were 84% fertile when mated with males from the same source. The MS (0.2 gC:0.2 gS) diet is the preferred choice to replace the currently used diet, reducing the larval growth period by 60% without negative effects on key life cycle parameters of E. saccharina.
Collapse
Affiliation(s)
- Nomalizo C. Ngomane
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
- South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe 4300, KwaZulu-Natal, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
| | - Des E. Conlong
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
- South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe 4300, KwaZulu-Natal, South Africa
- Correspondence:
| |
Collapse
|
7
|
Tarusikirwa VL, Cuthbert RN, Mutamiswa R, Gotcha N, Nyamukondiwa C. Water Balance and Desiccation Tolerance of the Invasive South American Tomato Pinworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1743-1751. [PMID: 34231839 DOI: 10.1093/jee/toab128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Temperature and dehydration stress are two major co-occurring environmental stressors threatening the physiology, biochemistry, and ecology of insects. As such, understanding adaptive responses to desiccation stress is critical for predicting climate change impacts, particularly its influence on insect invasions. Here, we assessed water balance and desiccation resistance of the invasive Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), and infer how eco-physiology shapes its niche. We measured basal body water and lipid content, water loss rates (WLRs), and desiccation resistance in larvae (second to fourth instars) and adults. Body -water, -lipid, and WLRs significantly varied across life stages. Second instars recorded the lowest while fourth instars exhibited the highest body water and lipid content. Adult body water and lipid content were higher than second and third instars and lower than fourth instars while proportion of body water and lipid contents were highest in adults and second larval instars respectively. Water loss rates were significantly highest in fourth-instar larvae compared to other life stages, but differences among stages were less apparent at longer exposure durations (48 h). Desiccation resistance assays showed that second instars had greatest mortality while fourth-instar larvae and adults were the most desiccation tolerant. Our results show that T. absoluta fourth-instar larvae and adults are the most resilient developmental stages and potentially contribute most to the invasion success of the pest in arid environments. Incorporation of these species-specific eco-physiological traits in predictive models can help refine invasive species potential spread under changing climates.
Collapse
Affiliation(s)
- Vimbai L Tarusikirwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa
| | - Nonofo Gotcha
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| |
Collapse
|
8
|
Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet 2020; 21:135. [PMID: 33339509 PMCID: PMC7747409 DOI: 10.1186/s12863-020-00935-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.
Collapse
|
9
|
Huang J, Li G, Lei H, Fan C, Tian C, Chen Q, Huang B, Li H, Lu Z, Feng H. Low-temperature derived temporal change in the vertical distribution of Sesamia inferens larvae in winter, with links to its latitudinal distribution. PLoS One 2020; 15:e0236174. [PMID: 32722719 PMCID: PMC7386632 DOI: 10.1371/journal.pone.0236174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
To escape or alleviate low temperatures in winter, insects have evolved many behavioral and physiological strategies. The purple stem borer, Sesamia inferens (Walker) is currently reported to be expanding their northern distributions and causing damage to summer maize in Xinxiang, China. However, their method of coping with the lower temperature in the new northern breeding area in winter is largely unknown. This paper investigates the overwinter site of S. inferens, and identifies the cold hardiness of larvae collected from a new breeding area in winter and explores a potential distribution based on low temperature threshold and on species distribution model MaxEnt. The results show that the overwintering location of the S. inferens population is more likely to be underground with increasing latitude and the population gradually moved down the corn stalk and drilled completely underground in later winter (February) in the north. The cold hardiness test shows the species is a moderate freeze-tolerant one, and Supercooling Points (SCP), Freezing Points (FP) and the incidence of mortality during the middle of winter (January, SCP: -7.653, FP: -6.596) were significantly lower than early winter (October) or late winter (March). Distribution in the new expansion area was predicted and the survival probability area was below N 35° for the Air Lower Lethal Temperature (ALLT50) and below N 40° for the Underground Lower Lethal Temperature (ULLT50). The suitable habitat areas for S. inferens with MaxEnt were also below N 40°. This study suggests the overwinter strategies of S. inferens have led to the colonization of up to a five degree more northerly overwintering latitude.
Collapse
Affiliation(s)
- Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
- * E-mail: (JH); (HF)
| | - Guoping Li
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haixia Lei
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Chunbin Fan
- Tianjing Beidagang Wetland Conservation Centre, Tianjing, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe, China
| | - Bo Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huilong Li
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Zhaocheng Lu
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JH); (HF)
| |
Collapse
|
10
|
Gerken AR, Abts SR, Scully ED, Campbell JF. Artificial Selection to a Nonlethal Cold Stress in Trogoderma variabile Shows Associations With Chronic Cold Stress and Body Size. ENVIRONMENTAL ENTOMOLOGY 2020; 49:422-434. [PMID: 31913443 DOI: 10.1093/ee/nvz162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Extreme temperature has been used as an alternative to chemical treatments for stored product pests for years. Resistance to heat or cold treatments has not been documented in stored product insects, but repeated use of ineffective treatments could lead to adaptive tolerance. Trogoderma variabile (Dermestidae) is a common pest of stored products, and the larval stage is highly resistant to cold and destructive. We artificially selected populations by inducing chill coma at four different cold temperature treatments: 3 and 5 h at -10°C and 3 and 5 h at 0°C. Recovery time was highly heritable after selection for seven generations for decreased recovery time (cold tolerance) and increased recovery time (cold susceptibility) at all time and temperature combinations. Three replicate populations for each time and temperature combination varied substantially, suggesting different mutations in each population were probably responsible for selected phenotypes. Body size decreased in populations selected for cold susceptibility compared with those selected for cold tolerance and survivorship to long-term cold stress increased in the cold-tolerant populations compared with the susceptible populations. After the cessation of the selection experiment, cold tolerance dissipated within four generations from the populations at -10°C, but was maintained in populations exposed to 0°C. Our results suggest that warehouse beetles can adapt to cold stress quickly, but in the absence of cold stress, the proportion of cold-tolerant/susceptible individuals is quickly reduced, suggesting that some of the mutations responsible for these phenotypes may be associated with fitness costs under normal conditions.
Collapse
Affiliation(s)
| | - Shelby R Abts
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - Erin D Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - James F Campbell
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| |
Collapse
|
11
|
Marshall MM, Batten LC, Remington DL, Lacey EP. Natural selection contributes to geographic patterns of thermal plasticity in Plantago lanceolata. Ecol Evol 2019; 9:2945-2963. [PMID: 30891228 PMCID: PMC6405498 DOI: 10.1002/ece3.4977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
A long-standing debate in evolutionary biology concerns the relative importance of different evolutionary forces in explaining phenotypic diversification at large geographic scales. For example, natural selection is typically assumed to underlie divergence along environmental gradients. However, neutral evolutionary processes can produce similar patterns. We collected molecular genetic data from 14 European populations of Plantago lanceolata to test the contributions of natural selection versus neutral evolution to population divergence in temperature-sensitive phenotypic plasticity of floral reflectance. In P. lanceolata, reflectance plasticity is positively correlated with latitude/altitude. We used population pairwise comparisons between neutral genetic differentiation (F ST and Jost's D) and phenotypic differentiation (P ST) to assess the contributions of geographic distance and environmental parameters of the reproductive season in driving population divergence. Data are consistent with selection having shaped large-scale geographic patterns in thermal plasticity. The aggregate pattern of P ST versus F ST was consistent with divergent selection. F ST explained thermal plasticity differences only when geographic distance was not included in the model. Differences in the extent of cool reproductive season temperatures, and not overall temperature variation, explained plasticity differences independent of distance. Results are consistent with the hypothesis that thermal plasticity is adaptive where growing seasons are shorter and cooler, that is, at high latitude/altitude.
Collapse
Affiliation(s)
- Matthew M. Marshall
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Leslie C. Batten
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - David L. Remington
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Elizabeth P. Lacey
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| |
Collapse
|
12
|
Klockmann M, Wallmeyer L, Fischer K. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies. INSECT SCIENCE 2018; 25:894-904. [PMID: 28294575 DOI: 10.1111/1744-7917.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change.
Collapse
Affiliation(s)
- Michael Klockmann
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Leonard Wallmeyer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci Rep 2018; 8:9849. [PMID: 29959431 PMCID: PMC6026165 DOI: 10.1038/s41598-018-28259-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/20/2018] [Indexed: 11/24/2022] Open
Abstract
Traits of thermal sensitivity or performance are typically the focus of species distribution modelling. Among-population trait variation, trait plasticity, population connectedness and the possible climatic covariation thereof are seldom accounted for. Here, we examine multiple climate stress resistance traits, and the plasticity thereof, for a globally invasive agricultural pest insect, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). We also accounted for body size and population genetic connectivity among distinct populations from diverse bioclimatic regions across southern Africa. Desiccation resistance, starvation resistance, and critical thermal minimum (CTmin) and maximum (CTmax) of C. capitata varied between populations. For thermal tolerance traits, patterns of flexibility in response to thermal acclimation were suggestive of beneficial acclimation, but this was not the case for desiccation or starvation resistance. Population differences in measured traits were larger than those associated with acclimation, even though gene flow was high. Desiccation resistance was weakly but positively affected by growing degree-days. There was also a weak positive relationship between CTmin and temperature seasonality, but CTmax was weakly but negatively affected by the same bioclimatic variable. Our results suggest that the invasive potential of C. capitata may be supported by adaptation of tolerance traits to local bioclimatic conditions.
Collapse
|
14
|
Kleynhans E, Barton MG, Conlong DE, Terblanche JS. Population dynamics of Eldana saccharina Walker (Lepidoptera: Pyralidae): application of a biophysical model to understand phenological variation in an agricultural pest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:283-294. [PMID: 28786374 DOI: 10.1017/s0007485317000712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding pest population dynamics and seasonal phenology is a critical component of modern integrated pest-management programs. Accurate forecasting allows timely, cost-effective interventions, including maximum efficacy of, for example, biological control and/or sterile insect technique. Due to the variation in life stage-related sensitivity toward climate, insect pest population abundance models are often not easily interpreted or lack direct relevance to management strategies in the field. Here we apply a process-based (biophysical) model that incorporates climate data with life stage-dependent physiology and life history to attempt to predict Eldana saccharina life stage and generation turnover in sugarcane fields. Fitness traits are modelled at two agricultural locations in South Africa that differ in average temperature (hereafter a cold and a warm site). We test whether the life stage population structures in the field entering winter and local climate during winter directly affect development rates, and therefore interact to determine the population dynamics and phenological responses of E. saccharina in subsequent spring and summer seasons. The model predicts that: (1) E. saccharina can cycle through more generations at the warm site where fewer hours of cold and heat stress are endured, and (2) at the cold site, overwintering as pupae (rather than larvae) confer higher relative fitness and fecundity in the subsequent summer adult moths. The model predictions were compared with a large dataset of field observations from scouting records. Model predictions for larval presence (or absence) generally overlapped well with positive (or negative) scout records. These results are important for integrated pest management strategies by providing a useful foundation for future population dynamics models, and are applicable to a variety of agricultural landscapes, but especially the sugarcane industry of South Africa.
Collapse
Affiliation(s)
- E Kleynhans
- Centre for Invasion Biology,Department of Conservation Ecology and Entomology,Faculty of AgriSciences,Stellenbosch University,Stellenbosch,South Africa
| | - M G Barton
- Centre for Invasion Biology,Department of Conservation Ecology and Entomology,Faculty of AgriSciences,Stellenbosch University,Stellenbosch,South Africa
| | - D E Conlong
- Centre for Invasion Biology,Department of Conservation Ecology and Entomology,Faculty of AgriSciences,Stellenbosch University,Stellenbosch,South Africa
| | - J S Terblanche
- Centre for Invasion Biology,Department of Conservation Ecology and Entomology,Faculty of AgriSciences,Stellenbosch University,Stellenbosch,South Africa
| |
Collapse
|
15
|
Hoffmann AA. Rapid adaptation of invertebrate pests to climatic stress? CURRENT OPINION IN INSECT SCIENCE 2017; 21:7-13. [PMID: 28822492 DOI: 10.1016/j.cois.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
There is surprisingly little information on adaptive responses of pests and disease vectors to climatic stresses even though the short generation times and large population sizes associated with pests make rapid adaptation likely. Most evidence of adaptive differentiation has been obtained from geographic comparisons and these can directly or indirectly indicate rates of adaptation where historical data on invasions are available. There is very little information on adaptive shifts in pests detected through molecular comparisons even though the genomes of many pests are now available and can help to identify markers underlying adaptation. While the limited evidence available points to frequent rapid adaptation that can affect pest and disease vector control, constraints to adaptation are also evident and a predictive framework around the likelihood and limits of rapid adaptation is required.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
16
|
Pieterse W, Terblanche JS, Addison P. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)? JOURNAL OF INSECT PHYSIOLOGY 2017; 98:1-6. [PMID: 27845146 DOI: 10.1016/j.jinsphys.2016.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/12/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) has shown remarkable range expansion over the past 10years and invaded several new continents including Africa. Here we report results of a detailed assessment of acute high and low temperature survival ability and the plasticity thereof, to test the hypothesis that traits of the thermal niche have contributed to the species' invasion ability. We also assess life-stage-related variation of thermal tolerances to determine potential stage-related environmental sensitivity. The temperatures at which c. 20% of the population survived of B. dorsalis were determined to be -6.5°C and 42.7°C, respectively, when using 2h exposures. Further, four life stages of B. dorsalis (egg, 3rd instar larvae, pupae and adults) were exposed to high and low discriminating temperatures to compare their thermal survival rates. The egg stage was found to be the most resistant life stage to both high and low temperatures, since 44±2.3% survived the low and 60±4.2% survived the high discriminating temperature treatments respectively. Finally, the potential for adult hardening responses to mediate tolerance of extremes was also considered using a diverse range of acute conditions (using 2h exposures to 15°C, 10°C and 5°C and 30°C, 35°C, 37°C and 39°C as hardening temperatures, and some treatments with and without recovery periods between hardening and discriminating temperature treatment). These showed that although some significant hardening responses could be detected in certain treatments (e.g. after exposure to 37°C and 39°C), the magnitude of this plasticity was generally low compared to two other wide-spread and more geographically-range-restricted con-familial species, Ceratitis capitata and C. rosa. In other words, Bactrocera dorsalis adults were unable to rapidly heat- or cold-harden to the same extent as the other Ceratitis species examined to date. These results suggest a narrower thermal niche in B. dorsalis compared to these Ceratitis species - in both basal and plastic terms - and suggests that its geographic distribution might be more restricted in consequence.
Collapse
Affiliation(s)
- Welma Pieterse
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Pia Addison
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| |
Collapse
|
17
|
The impact of geographical origin of two strains of the herbivore, Eccritotarsus catarinensis, on several fitness traits in response to temperature. J Therm Biol 2016; 60:222-30. [DOI: 10.1016/j.jtherbio.2016.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/23/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
|
18
|
Sgrò CM, Terblanche JS, Hoffmann AA. What Can Plasticity Contribute to Insect Responses to Climate Change? ANNUAL REVIEW OF ENTOMOLOGY 2015; 61:433-51. [PMID: 26667379 DOI: 10.1146/annurev-ento-010715-023859] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.
Collapse
Affiliation(s)
- Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland 7602, South Africa;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia;
| |
Collapse
|
19
|
Hill MP, Malan AP, Terblanche JS. Divergent thermal specialisation of two South African entomopathogenic nematodes. PeerJ 2015; 3:e1023. [PMID: 26157609 PMCID: PMC4493674 DOI: 10.7717/peerj.1023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023] Open
Abstract
Thermal physiology of entomopathogenic nematodes (EPN) is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e., show phenotypic flexibility) depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8 ± 0.3 °C) has greater high temperature tolerance than H. zealandica (LT50 = 36.7 ± 0.2 °C), but S. yirgalemense (LT50 = -2.4 ± 0 °C) has poorer low temperature tolerance in comparison to H. zealandica (LT50 = -9.7 ± 0.3 °C), suggesting these two EPN species occupy divergent thermal niches to one another. Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5 °C acclimation lowered survival until below -12.5 °C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.
Collapse
Affiliation(s)
- Matthew P. Hill
- Centre of Excellence for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Antoinette P. Malan
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - John S. Terblanche
- Centre of Excellence for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| |
Collapse
|
20
|
Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl 2015; 8:23-46. [PMID: 25667601 PMCID: PMC4310580 DOI: 10.1111/eva.12234] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Philippa C Griffin
- Department of Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - John G Oakeshott
- CSIRO Land and Water Flagship, Black Mountain LaboratoriesCanberra, ACT, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery CentreBentley, WA, Australia
| | - Ary A Hoffmann
- Departments of Zoology and Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|
21
|
Williams CM, Chick WD, Sinclair BJ. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline M. Williams
- Department of Integrative Biology University of California 3040 Valley Life Sciences Building #3140 Berkeley CA 94720‐3140 USA
| | - Wesley D. Chick
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| |
Collapse
|
22
|
Kleynhans E, Conlong DE, Terblanche JS. Direct and indirect effects of development temperature on adult water balance traits of Eldana saccharina (Lepidoptera: Pyralidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 68:69-75. [PMID: 25008194 DOI: 10.1016/j.jinsphys.2014.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/20/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
For water balance physiology, prior thermal history may pre-condition individuals to be more sparing in their water consumption at a given temperature upon subsequent exposure, or alternatively, may relax constraints on water economy leading to more frivolous use of water at a later stage. Here we test these two major alternative hypotheses on the adult life stage of Eldana saccharina Walker (Lepidoptera: Pyralidae) by exposing them to different rearing temperatures (acclimation treatments) during immature stage development and comparing adult physiological performance (water loss rates, time to death) and water-balance related traits (body size, water content). Developmental acclimation at 20°C, 25°C or 30°C throughout the larval and pupal stage resulted in significant effects on water balance traits of two-day old adult male and female E. saccharina. In summary, lower developmental acclimation resulted in a 61% increase in water loss rate (range: 0.78mg/h) and a 26% reduction in survival time (6.8h). Initial body water content and initial body mass generally remained similar across male acclimation groups while higher developmental acclimation reduced female body mass significantly. High developmental acclimation resulted in significantly higher (∼23%) body water content at death possibly indicating a better overall ability to withstand desiccating conditions, although there was no difference in time to death compared to the intermediate group. The relationship between time to death and body mass was altered from negative at 25°C and 30°C acclimation, to positive at 20°C acclimation. These results show pervasive effects of rearing temperature on adult physiological performance, with low temperature relaxing what appear to be substantial constraints on water economy at higher temperatures for E. saccharina. Furthermore, they are significant for understanding the recent range expansion of E. saccharina into cooler environments in southern Africa and for management of the species.
Collapse
Affiliation(s)
- Elsje Kleynhans
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Des E Conlong
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa; Crop Biology Resource Centre, South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe, Durban 4300, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|