1
|
Recart W, Bernhard R, Ng I, Garcia K, Fleming-Davies AE. Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens 2023; 12:pathogens12020347. [PMID: 36839619 PMCID: PMC9958737 DOI: 10.3390/pathogens12020347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host-pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.
Collapse
Affiliation(s)
- Wilnelia Recart
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Correspondence:
| | - Rover Bernhard
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Biology Department, Lewis and Clark College, 615 S. Palatine Hill Road, Portland, OR 97219, USA
| | - Isabella Ng
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | - Katherine Garcia
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Environmental Sciences Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0021, USA
| | | |
Collapse
|
2
|
Ananko GG, Kolosov AV. Asian gypsy moth (Lymantria dispar L.) populations: Tolerance of eggs to extreme winter temperatures. J Therm Biol 2021; 102:103123. [PMID: 34863486 DOI: 10.1016/j.jtherbio.2021.103123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Gypsy moth Lymantria dispar (GM) is a polyphagous insect and one of the most significant pests in the forests of Eurasia and North America (U.S. and Canada). Accurate information on GM cold-hardiness is needed to improve methods for the prediction of population outbreaks, as well as for forecasting possible GM range displacements due to climate change. As a result of laboratory and field studies, we found that the lower lethal temperature (at which all eggs die) range from -29.0 °C to -29.9 °C for three studied populations of L. dispar asiatica, and no egg survived cooling to -29.9 °C. These limits agree, to within one degree, with the previously established cold-hardiness limits of the European subspecies L. dispar, which is also found in North America. This coincidence indicates that the lower lethal temperature of L. dispar is conservative. Thus, we found that the Siberian populations of GM inhabit an area where winter temperatures go beyond the limits of egg physiological tolerance, because temperatures often fall below -30 °C. Apparently, it is due to the flexibility of ovipositional behavior that L. dispar asiatica survives in Siberia: the lack of physiological tolerance of eggs is compensated by choosing warm biotopes for oviposition. One of the most important factors contributing to the survival of GM eggs in Siberia is the stability of the snow cover.
Collapse
Affiliation(s)
- G G Ananko
- FBRI State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Koltsovo, Novosibirsk Region, Russia.
| | - A V Kolosov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Koltsovo, Novosibirsk Region, Russia.
| |
Collapse
|
3
|
Mihaljevic JR, Polivka CM, Mehmel CJ, Li C, Dukic V, Dwyer G. An Empirical Test of the Role of Small-Scale Transmission in Large-Scale Disease Dynamics. Am Nat 2020; 195:616-635. [PMID: 32216670 DOI: 10.1086/707457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A key assumption of epidemiological models is that population-scale disease spread is driven by close contact between hosts and pathogens. At larger scales, however, mechanisms such as spatial structure in host and pathogen populations and environmental heterogeneity could alter disease spread. The assumption that small-scale transmission mechanisms are sufficient to explain large-scale infection rates, however, is rarely tested. Here, we provide a rigorous test using an insect-baculovirus system. We fit a mathematical model to data from forest-wide epizootics while constraining the model parameters with data from branch-scale experiments, a difference in spatial scale of four orders of magnitude. This experimentally constrained model fits the epizootic data well, supporting the role of small-scale transmission, but variability is high. We then compare this model's performance to an unconstrained model that ignores the experimental data, which serves as a proxy for models with additional mechanisms. The unconstrained model has a superior fit, revealing a higher transmission rate across forests compared with branch-scale estimates. Our study suggests that small-scale transmission is insufficient to explain baculovirus epizootics. Further research is needed to identify the mechanisms that contribute to disease spread across large spatial scales, and synthesizing models and multiscale data are key to understanding these dynamics.
Collapse
|
4
|
Kyle CH, Liu J, Gallagher ME, Dukic V, Dwyer G. Stochasticity and Infectious Disease Dynamics: Density and Weather Effects on a Fungal Insect Pathogen. Am Nat 2020; 195:504-523. [PMID: 32097039 PMCID: PMC10465172 DOI: 10.1086/707138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In deterministic models of epidemics, there is a host abundance threshold above which the introduction of a few infected individuals leads to a severe epidemic. Studies of weather-driven animal pathogens often assume that abundance thresholds will be overwhelmed by weather-driven stochasticity, but tests of this assumption are lacking. We collected observational and experimental data for a fungal pathogen, Entomophaga maimaiga, that infects the gypsy moth, Lymantria dispar. We used an advanced statistical-computing algorithm to fit mechanistic models to our data, such that different models made different assumptions about the effects of host density and weather on E. maimaiga epizootics (epidemics in animals). We then used Akaike information criterion analysis to choose the best model. In the best model, epizootics are driven by a combination of weather and host density, and the model does an excellent job of explaining the data, whereas models that allow only for weather effects or only for density-dependent effects do a poor job of explaining the data. Density-dependent transmission in our best model produces a host density threshold, but this threshold is strongly blurred by the stochastic effects of weather. Our work shows that host-abundance thresholds may be important even if weather strongly affects transmission, suggesting that epidemiological models that allow for weather have an important role to play in understanding animal pathogens. The success of our model means that it could be useful for managing the gypsy moth, an important pest of hardwood forests in North America.
Collapse
Affiliation(s)
- Colin H. Kyle
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - Jiawei Liu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - Molly E. Gallagher
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - Vanja Dukic
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309
| | - Greg Dwyer
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
5
|
Understanding the Evolutionary Ecology of host--pathogen Interactions Provides Insights into the Outcomes of Insect Pest Biocontrol. Viruses 2020; 12:v12020141. [PMID: 31991772 PMCID: PMC7077243 DOI: 10.3390/v12020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023] Open
Abstract
The use of viral pathogens to control thepopulation size of pest insects has produced both successful and unsuccessful outcomes. Here, we investigate whether those biocontrol successes and failures can be explained by key ecological and evolutionary processes between hosts and pathogens. Specifically, we examine how heterogeneity inpathogen transmission, ecological and evolutionary tradeoffs, andpathogen diversity affect insect population density and thus successful control. Wefirst review theexisting literature and then use numerical simulations of mathematical models to further explore these processes. Our results show that thecontrol of insect densities using viruses depends strongly on theheterogeneity of virus transmission among insects. Overall, increased heterogeneity of transmission reduces theeffect of viruses on insect densities and increases thelong-term stability of insect populations. Lower equilibrium insect densities occur when transmission is heritable and when there is atradeoff between mean transmission and insect fecundity compared to when theheterogeneity of transmission arises from non-genetic sources. Thus, theheterogeneity of transmission is akey parameter that regulates thelong-term population dynamics of insects and their pathogens. Wealso show that both heterogeneity of transmission and life-history tradeoffs modulate characteristics of population dynamics such as thefrequency and intensity of ``boom--bust" population cycles. Furthermore, we show that because of life-history tradeoffs affecting thetransmission rate, theuse of multiple pathogen strains is more effective than theuse of asingle strain to control insect densities only when thepathogen strains differ considerably intheir transmission characteristics. By quantifying theeffects of ecology and evolution on population densities, we are able to offer recommendations to assess thelong-term effects of classical biocontrol.
Collapse
|
6
|
Friedline CJ, Faske TM, Lind BM, Hobson EM, Parry D, Dyer RJ, Johnson DM, Thompson LM, Grayson KL, Eckert AJ. Evolutionary genomics of gypsy moth populations sampled along a latitudinal gradient. Mol Ecol 2019; 28:2206-2223. [PMID: 30834645 DOI: 10.1111/mec.15069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023]
Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.
Collapse
Affiliation(s)
| | - Trevor M Faske
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon M Lind
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia
| | - Erin M Hobson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Parry
- Department of Environmental & Forest Biology, State University of New York, Syracuse, New York
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Woestmann L, Gibbs M, Hesketh H, Saastamoinen M. Viral exposure effects on life-history, flight-related traits, and wing melanisation in the Glanville fritillary butterfly. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:136-143. [PMID: 29627352 PMCID: PMC5971209 DOI: 10.1016/j.jinsphys.2018.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Infections represent a constant threat for organisms and can lead to substantial fitness losses. Understanding how individuals, especially from natural populations, respond towards infections is thus of great importance. Little is known about immunity in the Glanville fritillary butterfly (Melitaea cinxia). As the larvae live gregariously in family groups, vertical and horizontal transmission of infections could have tremendous effects on individuals and consequently impact population dynamics in nature. We used the Alphabaculovirus type strain Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and demonstrated that positive concentration-dependent baculovirus exposure leads to prolonged developmental time and decreased survival during larval and pupal development, with no sex specific differences. Viral exposure did not influence relative thorax mass or wing morphometric traits often related to flight ability, yet melanisation of the wings increased with viral exposure, potentially influencing disease resistance or flight capacity via thermal regulation. Further research is needed to explore effects under sub-optimal conditions, determine effects on fitness-related traits, and investigate a potential adaptive response of increased melanisation in the wings due to baculovirus exposure.
Collapse
Affiliation(s)
- Luisa Woestmann
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Helen Hesketh
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| |
Collapse
|
8
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Neumann R, Ruppel N, Schneider JM. Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD. PeerJ 2017; 5:e4050. [PMID: 29158981 PMCID: PMC5694211 DOI: 10.7717/peerj.4050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Animal growth is often constrained by unfavourable conditions and divergences from optimal body size can be detrimental to an individual's fitness, particularly in species with determinate growth and a narrow time-frame for life-time reproduction. Growth restriction in early juvenile stages can later be compensated by means of plastic developmental responses, such as adaptive catch-up growth (the compensation of growth deficits through delayed development). Although sex differences regarding the mode and degree of growth compensation have been coherently predicted from sex-specific fitness payoffs, inconsistent results imply a need for further research. We used the African Nephila senegalensis, representing an extreme case of female-biased sexual size dimorphism (SSD), to study fitness implications of sex-specific growth compensation. We predicted effective catch-up growth in early food-restricted females to result in full compensation of growth deficits and a life-time fecundity (LTF) equivalent to unrestricted females. Based on a stronger trade-off between size-related benefits and costs of a delayed maturation, we expected less effective catch-up growth in males. METHODS We tracked the development of over one thousand spiders in different feeding treatments, e.g., comprising a fixed period of early low feeding conditions followed by unrestricted feeding conditions, permanent unrestricted feeding conditions, or permanent low feeding conditions as a control. In a second experimental section, we assessed female fitness by measuring LTF in a subset of females. In addition, we tested whether compensatory development affected the reproductive lifespan in both sexes and analysed genotype-by-treatment interactions as a potential cause of variation in life-history traits. RESULTS Both sexes delayed maturation to counteract early growth restriction, but only females achieved full compensation of adult body size. Female catch-up growth resulted in equivalent LTF compared to unrestricted females. We found significant interactions between experimental treatments and sex as well as between treatments and family lineage, suggesting that family-specific responses contribute to the unusually large variation of life-history traits in Nephila spiders. Our feeding treatments had no effect on the reproductive lifespan in either sex. DISCUSSION Our findings are in line with predictions of life-history theory and corroborate strong fecundity selection to result in full female growth compensation. Males showed incomplete growth compensation despite a delayed development, indicating relaxed selection on large size and a stronger trade-off between late maturation and size-related benefits. We suggest that moderate catch-up growth in males is still adaptive as a 'bet-hedging' strategy to disperse unavoidable costs between life-history traits affected by early growth restriction (the duration of development and adult size).
Collapse
Affiliation(s)
- Rainer Neumann
- Zoologisches Institut, Biozentrum Grindel, Universität Hamburg, Hamburg, Germany
| | - Nicole Ruppel
- Zoologisches Institut, Biozentrum Grindel, Universität Hamburg, Hamburg, Germany
| | - Jutta M. Schneider
- Zoologisches Institut, Biozentrum Grindel, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Williams T, Virto C, Murillo R, Caballero P. Covert Infection of Insects by Baculoviruses. Front Microbiol 2017; 8:1337. [PMID: 28769903 PMCID: PMC5511839 DOI: 10.3389/fmicb.2017.01337] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Baculoviruses (Baculoviridae) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host-virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host-pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect-virus pathosystems at the organismal level and to explore the evolutionary and ecological relationships of these pathogens with major crop and forest pests.
Collapse
Affiliation(s)
| | - Cristina Virto
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| | - Rosa Murillo
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| | - Primitivo Caballero
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| |
Collapse
|
11
|
Páez DJ, Dukic V, Dushoff J, Fleming-Davies A, Dwyer G. Eco-Evolutionary Theory and Insect Outbreaks. Am Nat 2017; 189:616-629. [PMID: 28514636 DOI: 10.1086/691537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Eco-evolutionary theory argues that population cycles in consumer-resource interactions are partly driven by natural selection, such that changes in densities and changes in trait values are mutually reinforcing. Evidence that the theory explains cycles in nature, however, is almost nonexistent. Experimental tests of model assumptions are logistically impractical for most organisms, while for others, evidence that population cycles occur in nature is lacking. For insect baculoviruses in contrast, tests of model assumptions are straightforward, and there is strong evidence that baculoviruses help drive population cycles in many insects, including the gypsy moth that we study here. We therefore used field experiments with the gypsy moth baculovirus to test two key assumptions of eco-evolutionary models of host-pathogen population cycles: that reduced host infection risk is heritable and that it is costly. Our experiments confirm both assumptions, and inserting parameters estimated from our data into eco-evolutionary insect-outbreak models gives cycles closely resembling gypsy moth outbreak cycles in North America, whereas standard models predict unrealistic stable equilibria. Our work shows that eco-evolutionary models are useful for explaining outbreaks of forest insect defoliators, while widespread observations of intense selection on defoliators in nature and of heritable and costly resistance in defoliators in the lab together suggest that eco-evolutionary dynamics may play a general role in defoliator outbreaks.
Collapse
|
12
|
Hudson AI, Fleming-Davies AE, Páez DJ, Dwyer G. Genotype-by-genotype interactions between an insect and its pathogen. J Evol Biol 2016; 29:2480-2490. [PMID: 27622965 DOI: 10.1111/jeb.12977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Genotype-by-genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full-sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between-isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between-isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth-baculovirus interaction and provide empirical evidence that correlations in infection rates between field-collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.
Collapse
Affiliation(s)
- A I Hudson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - A E Fleming-Davies
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - D J Páez
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - G Dwyer
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|