1
|
Young EA, Postma E. Low interspecific variation and no phylogenetic signal in additive genetic variance in wild bird and mammal populations. Ecol Evol 2023; 13:e10693. [PMID: 37933323 PMCID: PMC10625858 DOI: 10.1002/ece3.10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
Evolutionary adaptation through genetic change requires genetic variation and is a key mechanism enabling species to persist in changing environments. Although a substantial body of work has focused on understanding how and why additive genetic variance (V A) differs among traits within species, we still know little about how they vary among species. Here we make a first attempt at testing for interspecific variation in two complementary measures of V A and the role of phylogeny in shaping this variation. To this end, we performed a phylogenetic comparative analysis using 1822 narrow-sense heritability (h 2) for 68 species of birds and mammals and 378 coefficients of additive genetic variance (CV A) estimates for 23 species. Controlling for within-species variation attributable to estimation method and trait type, we found some interspecific variation in h 2 (~15%) but not CV A. Although suggestive of interspecific variation in the importance of non-(additive) genetic sources of variance, sample sizes were insufficient to test this hypothesis directly. Additionally, although power was low, no phylogenetic signal was detected for either measure. Hence, while this suggests interspecific variation in V A is probably small, our understanding of interspecific variation in the adaptive potential of wild vertebrate populations is currently hampered by data limitations, a scarcity of CV A estimates and a measure of their uncertainty in particular.
Collapse
Affiliation(s)
- Euan A. Young
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Erik Postma
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
2
|
Lou Y, Zhao Q, Hu Y, Chen L, Liu P, Fang Y, Lloyd H, Sun Y. Personality-dependent nest site selection and nest success during incubation in wild chestnut thrushes. iScience 2023; 26:107419. [PMID: 37575181 PMCID: PMC10415915 DOI: 10.1016/j.isci.2023.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
In birds, little is known about how individuals choose nest sites based on their personality traits. Here, we investigate whether a female's personality (activity and breathing rate) can affect patterns of nest site selection at different spatial scales in a wild population of chestnut thrush (Turdus rubrocanus) and determine whether nest site characteristics and female personality traits affect clutch size and nest success during incubation. We found that neither activity nor breathing rate were associated with large-scale nesting habitat variables. At the fine-scale level, more active females chose nest sites with greater nest lateral concealment. Females with higher breathing rates laid smaller clutch sizes than individuals with lower breathing rates. Nests of females with lower breathing rate had higher nest success during incubation. This work highlights the relationships between personality and nest site selection in birds, and the important role of female personality traits in reproductive success.
Collapse
Affiliation(s)
- Yingqiang Lou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingshan Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbiao Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengfei Liu
- School of Life Sciences and Technology, Longdong University, Qingyang 745000, China
| | - Yun Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huw Lloyd
- Department of Natural Sciences, Manchester Metropolitan University. Manchester M15GD, UK
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Morales-Mata JI, Potti J, Camacho C, Martínez-Padilla J, Canal D. Phenotypic selection on an ornamental trait is not modulated by breeding density in a pied flycatcher population. J Evol Biol 2022; 35:610-620. [PMID: 35293060 PMCID: PMC9311403 DOI: 10.1111/jeb.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Most studies of phenotypic selection in the wild have focussed on morphological and life‐history traits and looked at abiotic (climatic) variation as the main driver of selection. Consequently, our knowledge of the effects of biotic environmental variation on phenotypic selection on sexual traits is scarce. Population density can be considered a proxy for the intensity of intrasexual and intersexual competition and could therefore be a key factor influencing the covariation between individual fitness and the expression of sexual traits. Here, we used an individual‐based data set from a population of pied flycatchers (Ficedula hypoleuca) monitored over 24 years to analyze the effect of breeding density on phenotypic selection on dorsal plumage colouration, a heritable and sexually selected ornament in males of this species. Using the number of recruits as a fitness proxy, our results showed overall stabilizing selection on male dorsal colouration, with intermediate phenotypes being favoured over extremely dark and dull individuals. However, our results did not support the hypothesis that breeding density mediates phenotypic selection on this sexual trait. We discuss the possible role of other biotic factors influencing selection on ornamental plumage.
Collapse
Affiliation(s)
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - David Canal
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| |
Collapse
|
4
|
Passarotto A, Morosinotto C, Brommer JE, Aaltonen E, Ahola K, Karstinen T, Karell P. Cold winters have morph-specific effects on natal dispersal distance in a wild raptor. Behav Ecol 2021; 33:419-427. [PMID: 35444494 PMCID: PMC9015216 DOI: 10.1093/beheco/arab149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Dispersal is a key process with crucial implications in spatial distribution, density, and genetic structure of species’ populations. Dispersal strategies can vary according to both individual and environmental features, but putative phenotype-by-environment interactions have rarely been accounted for. Melanin-based color polymorphism is a phenotypic trait associated with specific behavioral and physiological profiles and is, therefore, a good candidate trait to study dispersal tactics in different environments. Here, using a 40 years dataset of a population of color polymorphic tawny owls (Strix aluco), we investigated natal dispersal distance of recruiting gray and pheomelanic reddish-brown (hereafter brown) color morphs in relation to post-fledging winter temperature and individual characteristics. Because morphs are differently sensitive to cold winters, we predicted that morphs’ natal dispersal distances vary according to winter conditions. Winter temperature did not affect the proportion of brown (or gray) among recruits. We found that dispersal distances correlate with winter temperature in an opposite manner in the two morphs. Although the gray morph undertakes larger movements in harsher conditions, likely because it copes better with winter severity, the brown morph disperses shorter distances when winters are harsher. We discuss this morph-specific natal dispersal pattern in the context of competition for territories between morphs and in terms of costs and benefits of these alternative strategies. Our results stress the importance of considering the interaction between phenotype and environment to fully disentangle dispersal movement patterns and provide further evidence that climate affects the behavior and local distribution of this species.
Collapse
Affiliation(s)
- Arianna Passarotto
- University of Seville, Department of Zoology, Sevilla, Spain
- Bioeconomy Research Team, Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600 Raseborg, Finland
| | - Chiara Morosinotto
- Bioeconomy Research Team, Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600 Raseborg, Finland
- Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 39 (Ecology Building), SE-223 62 Lund, Sweden
| | - Jon E Brommer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | | | - Kari Ahola
- Tornihaukantie 8D 72, FI-02620 Espoo, Finland
| | | | - Patrik Karell
- Bioeconomy Research Team, Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600 Raseborg, Finland
- Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 39 (Ecology Building), SE-223 62 Lund, Sweden
| |
Collapse
|
5
|
Heterogeneous selection on exploration behavior within and among West European populations of a passerine bird. Proc Natl Acad Sci U S A 2021; 118:2024994118. [PMID: 34234017 DOI: 10.1073/pnas.2024994118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous selection is often proposed as a key mechanism maintaining repeatable behavioral variation ("animal personality") in wild populations. Previous studies largely focused on temporal variation in selection within single populations. The relative importance of spatial versus temporal variation remains unexplored, despite these processes having distinct effects on local adaptation. Using data from >3,500 great tits (Parus major) and 35 nest box plots situated within five West-European populations monitored over 4 to 18 y, we show that selection on exploration behavior varies primarily spatially, across populations, and study plots within populations. Exploration was, simultaneously, selectively neutral in the average population and year. These findings imply that spatial variation in selection may represent a primary mechanism maintaining animal personalities, likely promoting the evolution of local adaptation, phenotype-dependent dispersal, and nonrandom settlement. Selection also varied within populations among years, which may counteract local adaptation. Our study underlines the importance of combining multiple spatiotemporal scales in the study of behavioral adaptation.
Collapse
|
6
|
Lacey EP, Herrera FO, Richter SJ. Multiple modes of selection can influence the role of phenotypic plasticity in species' invasions: Evidence from a manipulative field experiment. Ecol Evol 2021; 11:4140-4157. [PMID: 33976799 PMCID: PMC8093752 DOI: 10.1002/ece3.7311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
In exploring the roles of phenotypic plasticity in the establishment and early evolution of invading species, little empirical attention has been given to the importance of correlational selection acting upon suites of functionally related plastic traits in nature. We illustrate how this lack of attention has limited our ability to evaluate plasticity's role during invasion and also, the costs and benefits of plasticity. We addressed these issues by transplanting clones of European-derived Plantago lanceolata L. genotypes into two temporally variable habitats in the species' introduced range in North America. Phenotypic selection analyses were performed for each habitat to estimate linear, quadratic, and correlational selection on phenotypic trait values and plasticities in the reproductive traits: flowering onset and spike and scape lengths. Also, we measured pairwise genetic correlations for our "colonists." Results showed that (a) correlational selection acted on trait plasticity after transplantation, (b) selection favored certain combinations of genetically correlated and uncorrelated trait values and plasticities, and (c) using signed, instead of absolute, values of plasticity in analyses facilitated the detection of correlational selection on trait value-plasticity combinations and their adaptive value. Based on our results, we urge future studies on species invasions to (a) measure correlational selection and (b) retain signed values of plasticity in order to better discriminate between adaptive and maladaptive plasticity.
Collapse
Affiliation(s)
| | | | - Scott J. Richter
- Department of Mathematics & StatisticsUniversity of North CarolinaGreensboroNCUSA
| |
Collapse
|
7
|
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, Ylönen H. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 2021; 195:601-622. [PMID: 33369695 PMCID: PMC7940343 DOI: 10.1007/s00442-020-04810-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
Collapse
Affiliation(s)
- Harry P Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - Fraucke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| | - Stefan Halle
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Otso Huitu
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Vertebrate Research, Julius Kühn-Institut, Toppheideweg 88, 48161, Münster, Germany
| | - Kaja Johnsen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Juan Jose Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenierıas Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre D'Études Nordiques, Department of Biology, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB, E1A 3E9, Canada
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Osmo Rätti
- Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland
| | - Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marine, Kent, ME4 4TB, UK
| | - Joannes van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
8
|
Fülöp A, Lukács D, Fábián PI, Kocsis B, Csöppü G, Bereczki J, Barta Z. Sex-specific signalling of individual personality by a mutual plumage ornament in a passerine. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02971-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
The significance of colour signals in species with strong sexual dimorphism and/or elaborated visual ornaments is rather well-understood. Less attention has, however, been devoted to study colour signals in species with weak or no apparent sexual dimorphism. In such species, an interesting possibility arises as both sexes can bear the same colour ornament(s) (i.e. sexes are mutually ornamented), but their signalling value might differ in males and females. We aimed to explore this possibility by investigating the phenotypic correlates of the black bib, a melanin-based plumage ornament, in the Eurasian tree sparrow (Passer montanus). More specifically, we studied the sex-dependent relationships between bib size and three aspects of individuals’ phenotype: body condition (i.e. size-corrected body mass), physiology (i.e. cellular innate immunity/inflammation status, expressed through total leucocyte counts, and chronic physiological stress, expressed through the ratio of heterophils to lymphocytes) and individual personality (i.e. activity in a novel environment). We found that bib size was not associated with body condition and cellular innate immunity/inflammation status, but was positively related to physiological stress levels independent of sex. Furthermore, bib size was negatively associated with activity in males but positively in females. Our findings bring important correlative evidence that mutual ornamental traits may have sex-specific signalling value.
Significance statement
The signalling role of elaborated colourful ornaments, that are usually possessed only by males in sexually dimorphic species, is well-established. The function of various colour traits which are borne by both sexes (i.e. mutual ornaments), however, is less obvious. Do they have a signalling value in both sexes? If yes, do they signal the same information in males and females? Or, most intriguingly, can they convey different information in the two sexes? To test these alternatives, we studied the signalling value of the black bib, a melanin-based mutual plumage ornament, in Eurasian tree sparrows (Passer montanus). Apart from being correlated with chronic stress in both sexes, bib size was positively related to activity in females but negatively in males. Our results suggest that the information content of the same colour trait in males and females can be different in mutually ornamented species.
Collapse
|
9
|
Wetzel DP, Mutzel A, Wright J, Dingemanse NJ. Novel sources of (co)variation in nestling begging behavior and hunger at different biological levels of analysis. Behav Ecol 2020. [DOI: 10.1093/beheco/araa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Biological hypotheses predicting patterns of offspring begging typically concern the covariance with hunger and/or development at specific hierarchical levels. For example, hunger drives within-individual patterns of begging, but begging also drives food intake among individuals within broods, and begging and food intake can covary positively or negatively among genotypes or broods. Testing biological phenomena that occur at multiple levels, therefore, requires the partitioning of covariance between traits of interest to ensure that each level-specific relationship is appropriately assessed. We performed a partial cross-fostering study on a wild population of great tits (Parus major), then used multivariate mixed models to partition variation and covariation in nestling begging effort and two metrics of nestling hunger within versus among individual nestlings and broods. At the within-individual level, we found that nestlings begged more intensely when hungrier (positive correlation between begging and hunger). However, among individuals, nestlings that were fed more frequently also begged more intensely on average (negative correlation between begging and hunger). Variation in nestling mass did not give rise to the negative correlation between begging and hunger among nestlings, but we did find that lighter nestlings begged more intensely than their heavier biological siblings, suggesting that this effect may be driven by a genetic component linked to offspring size. Our study illustrates how patterns of covariance can differ across biological levels of analysis and addresses biological mechanisms that could produce these previously obscured patterns.
Collapse
Affiliation(s)
- Daniel P Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariane Mutzel
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jonathan Wright
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Niels J Dingemanse
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Thys B, Pinxten R, Eens M. Does the tie fit the female? Melanin-based colouration, aggressive personality and reproductive investment in female great tits (Parus major). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2828-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Grunst ML, Grunst AS, Pinxten R, Bervoets L, Eens M. Carotenoid- but not melanin-based plumage coloration is negatively related to metal exposure and proximity to the road in an urban songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113473. [PMID: 31679871 DOI: 10.1016/j.envpol.2019.113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Rapid urbanization is a global phenomenon that is increasingly exposing organisms to novel stressors. These novel stressors can affect diverse aspects of organismal function, including development of condition-dependent ornaments, which play critical roles in social and sexual selection. We investigated the relationship between metal pollution, proximity to roads, and carotenoid- and melanin-based plumage coloration in a common songbird, the great tit (Parus major). We studied populations located across a well-characterized metal pollution gradient and surrounded by roadway networks. Metal exposure and road-associated pollution could reduce carotenoid-based pigmentation by inducing oxidative stress or affecting habitat quality, but metals could also enhance melanin-based pigmentation, through effects on melanogenesis and testosterone concentrations. Using a large sample size (N > 500), we found that birds residing close to a point source for metals had reduced ultraviolet chroma, a component of carotenoid-based pigmentation. Moreover, birds with high feather metal concentrations had lower carotenoid chroma, hue, and ultraviolet chroma, with effects modified by age class. Birds residing closer to roads also had lower carotenoid chroma and hue. Melanin-based pigmentation showed high between-year repeatability, and no association with anthropogenic pollution. Results suggest that carotenoid-, but not melanin-, based pigmentation is negatively affected by multiple anthropogenic stressors. We are the first to demonstrate a negative association between roads and a plumage-based signaling trait, which could have important implications for sexual signaling dynamics in urban landscapes.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research Group, University of Antwerp, 2000, Antwerp, Belgium
| | - Lieven Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, 2020, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
12
|
Dingemanse NJ, Moiron M, Araya-Ajoy YG, Mouchet A, Abbey-Lee RN. Individual variation in age-dependent reproduction: Fast explorers live fast but senesce young? J Anim Ecol 2019; 89:601-613. [PMID: 31618450 DOI: 10.1111/1365-2656.13122] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/21/2019] [Indexed: 01/01/2023]
Abstract
Adaptive integration of life history and behaviour is expected to result in variation in the pace-of-life. Previous work focused on whether 'risky' phenotypes live fast but die young, but reported conflicting support. We posit that individuals exhibiting risky phenotypes may alternatively invest heavily in early-life reproduction but consequently suffer greater reproductive senescence. We used a 7-year longitudinal dataset with >1,200 breeding records of >800 female great tits assayed annually for exploratory behaviour to test whether within-individual age dependency of reproduction varied with exploratory behaviour. We controlled for biasing effects of selective (dis)appearance and within-individual behavioural plasticity. Slower and faster explorers produced moderate-sized clutches when young; faster explorers subsequently showed an increase in clutch size that diminished with age (with moderate support for declines when old), whereas slower explorers produced moderate-sized clutches throughout their lives. There was some evidence that the same pattern characterized annual fledgling success, if so, unpredictable environmental effects diluted personality-related differences in this downstream reproductive trait. Support for age-related selective appearance was apparent, but only when failing to appreciate within-individual plasticity in reproduction and behaviour. Our study identifies within-individual age-dependent reproduction, and reproductive senescence, as key components of life-history strategies that vary between individuals differing in risky behaviour. Future research should thus incorporate age-dependent reproduction in pace-of-life studies.
Collapse
Affiliation(s)
- Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Maria Moiron
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Campus CNRS, Montpellier, France
| | - Yimen G Araya-Ajoy
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,Center for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexia Mouchet
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany.,Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Robin N Abbey-Lee
- Research Group Evolutionary Ecology of Variation, Max Planck Institute for Ornithology, Seewiesen, Germany.,IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Class B, Brommer JE, van Oers K. Exploratory behavior undergoes genotype-age interactions in a wild bird. Ecol Evol 2019; 9:8987-8994. [PMID: 31462997 PMCID: PMC6706179 DOI: 10.1002/ece3.5430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/06/2022] Open
Abstract
Animal personality traits are often heritable and plastic at the same time. Indeed, behaviors that reflect an individual's personality can respond to environmental factors or change with age. To date, little is known regarding personality changes during a wild animals' lifetime and even less about stability in heritability of behavior across ages. In this study, we investigated age-related changes in the mean and in the additive genetic variance of exploratory behavior, a commonly used measure of animal personality, in a wild population of great tits. Heritability of exploration is reduced in adults compared to juveniles, with a low genetic correlation across these age classes. A random regression animal model confirmed the occurrence of genotype-age interactions (G×A) in exploration, causing a decrease in additive genetic variance before individuals become 1 year old, and a decline in cross-age genetic correlations between young and increasingly old individuals. Of the few studies investigating G×A in behaviors, this study provides rare evidence for this phenomenon in an extensively studied behavior. We indeed demonstrate that heritability and cross-age genetic correlations in this behavior are not stable over an individual's lifetime, which can affect its potential response to selection. Because G×A is likely to be common in behaviors and have consequences for our understanding of the evolution of animal personality, more attention should be turned to this phenomenon in the future work.
Collapse
Affiliation(s)
- Barbara Class
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
14
|
Santostefano F, Fanson KV, Endler JA, Biro PA. Behavioral, energetic, and color trait integration in male guppies: testing the melanocortin hypothesis. Behav Ecol 2019. [DOI: 10.1093/beheco/arz109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Individuals of the same population differ consistently from each other in the average expression of behavioral and physiological traits. Often, such traits are integrated and thus correlated with each other. However, the underlying proximate mechanisms generating and maintaining this among-individual covariation are still poorly understood. The melanocortin hypothesis suggests that the melanocortin pathways can have pleiotropic effects linking the expression of melanin-based coloration with physiological and behavioral traits. In the present study, we test this hypothesis in adult male guppies (Poecilia reticulata), by estimating among individual correlations between behaviors (activity, feeding, boldness, display, and chase during courtship), stress response (peak metabolic rate), and coloration (black spot, fuzzy black, and orange). The lack of correlation of any behavior or metabolism with black coloration indicates that the melanocortin hypothesis is not supported in this species. However, we observed covariation among coloration traits, as well as among behavioral traits. Our findings suggest that, although there appear to be constraints within sets of related traits, coloration, physiology, and behaviors can potentially evolve as independent modules in response to selection in this species.
Collapse
Affiliation(s)
- Francesca Santostefano
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
- Département des Sciences Biologiques, Université du Québec à Montréal, Pavillon des sciences biologiques, du Président-Kennedy, Montréal, Canada
| | - Kerry V Fanson
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| | - John A Endler
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| | - Peter A Biro
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| |
Collapse
|
15
|
Tuni C, Han CS, Dingemanse NJ. Multiple biological mechanisms result in correlations between pre- and post-mating traits that differ among versus within individuals and genotypes. Proc Biol Sci 2018; 285:rspb.2018.0951. [PMID: 30135156 DOI: 10.1098/rspb.2018.0951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/26/2018] [Indexed: 11/12/2022] Open
Abstract
Reproductive traits involved in mate acquisition (pre-mating traits) are predicted to covary with those involved in fertilization success (post-mating traits). Variation in male quality may give rise to positive, and resource allocation trade-offs to negative, covariances between pre- and post-mating traits. Empirical studies have yielded mixed results. Progress is hampered as researchers often fail to appreciate that mentioned biological mechanisms can act simultaneously but at different hierarchical levels of biological variation: genetic correlations may, for example, be negative due to genetic trade-offs but environmental correlations may instead be positive due to individual variation in resource acquisition. We measured pre-mating (aggression, body weight) and post-mating (ejaculate size) reproductive traits in a pedigreed population of southern field crickets (Gryllus bimaculatus). To create environmental variation, crickets were raised on either a low or a high nymphal density treatment. We estimated genetic and environmental sources of correlations between pre- and post-mating traits. We found positive genetic correlations between pre- and post-mating traits, implying the existence of genetic variation in male quality. Over repeated trials of the same individual (testing order), positive changes in one trait were matched with negative changes in other traits, suggesting energy allocating trade-offs within individuals among days. These findings demonstrate the need for research on pre- and post-mating traits to consider the hierarchical structure of trait correlations. Only by doing so was our study able to conclude that multiple mechanisms jointly shape phenotypic associations between pre- and post-mating traits in crickets.
Collapse
Affiliation(s)
- Cristina Tuni
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany .,The School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Costanzo A, Romano A, Ambrosini R, Parolini M, Rubolini D, Caprioli M, Corti M, Canova L, Saino N. Barn swallow antipredator behavior covaries with melanic coloration and predicts survival. Behav Ecol 2018. [DOI: 10.1093/beheco/ary102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Andrea Romano
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne, Switzerland
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Margherita Corti
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| | - Luca Canova
- Department of Chemistry, University of Pavia, Via Taramelli, Pavia, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria, Milan, Italy
| |
Collapse
|
17
|
Grunst AS, Grunst ML, Thys B, Raap T, Daem N, Pinxten R, Eens M. Variation in personality traits across a metal pollution gradient in a free-living songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:668-678. [PMID: 29494975 DOI: 10.1016/j.scitotenv.2018.02.191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic contaminants could alter traits central to animal behavioral types, or personalities, including aggressiveness, boldness and activity level. Lead and other toxic metals are persistent inorganic pollutants that affect organisms worldwide. Metal exposure can alter behavior by affecting neurology, endocrinology, and health. However, the direction and magnitude of the behavioral effects of metal exposure remain equivocal. Moreover, the degree to which metal exposure simultaneously affects suites of correlated behavioral traits (behavioral syndromes) that are controlled by common mechanisms remains unclear, with most studies focusing on single behaviors. Using a model species for personality variation, the great tit (Parus major), we explored differences in multiple behavioral traits across a pollution gradient where levels of metals, especially lead and cadmium, are elevated close to a smelter. We employed the novel environment exploration test, a proxy for variation in personality type, and also measured territorial aggressiveness and nest defense behavior. At polluted sites birds of both sexes displayed slower exploration behavior, which could reflect impaired neurological or physiological function. Territorial aggression and nest defense behavior were individually consistent, but did not vary with proximity to the smelter, suggesting that metal exposure does not concurrently affect exploration and aggression. Rather, exploration behavior appears more sensitive to metal pollution. Effects of metal pollution on exploration behavior, a key animal personality trait, could have critical effects on fitness.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Natasha Daem
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
18
|
Camacho C, Pérez-Rodríguez L, Abril-Colón I, Canal D, Potti J. Plumage colour predicts dispersal propensity in male pied flycatchers. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2417-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Sprau P, Dingemanse NJ. An Approach to Distinguish between Plasticity and Non-random Distributions of Behavioral Types Along Urban Gradients in a Wild Passerine Bird. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Charmantier A, Demeyrier V, Lambrechts M, Perret S, Grégoire A. Urbanization Is Associated with Divergence in Pace-of-Life in Great Tits. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Dingemanse NJ. The role of personality research in contemporary behavioral ecology: a comment on Beekman and Jordan. Behav Ecol 2017. [DOI: 10.1093/beheco/arx027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sprau P, Mouchet A, Dingemanse NJ. Multidimensional environmental predictors of variation in avian forest and city life histories. Behav Ecol 2016. [DOI: 10.1093/beheco/arw130] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Han CS, Jäger HY, Dingemanse NJ. Individuality in nutritional preferences: a multi-level approach in field crickets. Sci Rep 2016; 6:29071. [PMID: 27356870 PMCID: PMC4928176 DOI: 10.1038/srep29071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/09/2022] Open
Abstract
Selection may favour individuals of the same population to differ consistently in nutritional preference, for example, because optimal diets covary with morphology or personality. We provided Southern field crickets (Gryllus bimaculatus) with two synthetic food sources (carbohydrates and proteins) and quantified repeatedly how much of each macronutrient was consumed by each individual. We then quantified (i) whether individuals were repeatable in carbohydrate and protein intake rate, (ii) whether an individual's average daily intake of carbohydrates was correlated with its average daily intake of protein, and (iii) whether short-term changes in intake of carbohydrates coincided with changes in intake of protein within individuals. Intake rates were individually repeatable for both macronutrients. However, individuals differed in their relative daily intake of carbohydrates versus proteins (i.e., 'nutritional preference'). By contrast, total consumption varied plastically as a function of body weight within individuals. Body weight-but not personality (i.e., aggression, exploration behaviour)-positively predicted nutritional preference at the individual level as large crickets repeatedly consumed a higher carbohydrate to protein ratio compared to small ones. Our finding of level-specific associations between the consumption of distinct nutritional components demonstrates the merit of applying multivariate and multi-level viewpoints to the study of nutritional preference.
Collapse
Affiliation(s)
- Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Heidi Y Jäger
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|