1
|
Driver R, Ferretti V, Burton ES, McCoy MW, Duerr KC, Curry RL. Spatiotemporal variation in hatching success and nestling sex ratios track rapid movement of a songbird hybrid zone. Am Nat 2022; 200:264-274. [DOI: 10.1086/720207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Mccarthy E, Mcdiarmid CS, Hurley LL, Rowe M, Griffith SC. Highly variable sperm morphology in the masked finch ( Poephila personata) and other estrildid finches. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Spermatozoa exhibit remarkable levels of morphological diversification among and within species. Among the passerine birds, the zebra finch (Taeniopygia guttata) has become a model system for studies of sperm biology, yet studies of closely related Estrildidae finches remain scarce. Here, we examine sperm morphology in the masked finch (Poephila personata) and place the data into the broader context of passerine sperm morphology using data for an additional 189 species. The masked finch exhibited high levels of within- and among-male variation in total sperm length and in specific sperm components. Furthermore, among-male variance in sperm length was significantly greater in estrildid (N = 12) compared with non-estrildid species (N = 178). We suggest that the high variation in sperm morphology in the masked finch and other estrildid species is likely to be linked to low levels of sperm competition, hence relaxed or weak selection on sperm length, in the clade. Our findings highlight that the highly variable sperm of the masked finch and widely studied zebra finch are ‘typical’ for estrildid species and stress the relevance of studying groups of closely related species. Finally, we suggest that further studies of Estrildidae will enhance our understanding of sperm diversity and avian diversity more generally.
Collapse
Affiliation(s)
- Elise Mccarthy
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Callum S Mcdiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laura L Hurley
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AB, Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Kim KW, Jackson BC, Zhang H, Toews DPL, Taylor SA, Greig EI, Lovette IJ, Liu MM, Davison A, Griffith SC, Zeng K, Burke T. Genetics and evidence for balancing selection of a sex-linked colour polymorphism in a songbird. Nat Commun 2019; 10:1852. [PMID: 31015412 PMCID: PMC6478913 DOI: 10.1038/s41467-019-09806-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
Colour polymorphisms play a key role in sexual selection and speciation, yet the mechanisms that generate and maintain them are not fully understood. Here, we use genomic and transcriptomic tools to identify the precise genetic architecture and evolutionary history of a sex-linked colour polymorphism in the Gouldian finch Erythrura gouldiae that is also accompanied by remarkable differences in behaviour and physiology. We find that differences in colour are associated with an ~72-kbp region of the Z chromosome in a putative regulatory region for follistatin, an antagonist of the TGF-β superfamily genes. The region is highly differentiated between morphs, unlike the rest of the genome, yet we find no evidence that an inversion is involved in maintaining the distinct haplotypes. Coalescent simulations confirm that there is elevated nucleotide diversity and an excess of intermediate frequency alleles at this locus. We conclude that this pleiotropic colour polymorphism is most probably maintained by balancing selection.
Collapse
Affiliation(s)
- Kang-Wook Kim
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Benjamin C Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hanyuan Zhang
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David P L Toews
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY, 14853, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Scott A Taylor
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY, 14853, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Emma I Greig
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY, 14853, USA
| | - Mengning M Liu
- School of Biology, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Angus Davison
- School of Biology, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
O’Reilly GD, Jabot F, Gunn MR, Sherwin WB. Predicting Shannon’s information for genes in finite populations: new uses for old equations. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Toomey MB, Marques CI, Andrade P, Araújo PM, Sabatino S, Gazda MA, Afonso S, Lopes RJ, Corbo JC, Carneiro M. A non-coding region near Follistatin controls head colour polymorphism in the Gouldian finch. Proc Biol Sci 2018; 285:20181788. [PMID: 30282656 PMCID: PMC6191701 DOI: 10.1098/rspb.2018.1788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Discrete colour morphs coexisting within a single population are common in nature. In a broad range of organisms, sympatric colour morphs often display major differences in other traits, including morphology, physiology or behaviour. Despite the repeated occurrence of this phenomenon, our understanding of the genetics that underlie multi-trait differences and the factors that promote the long-term maintenance of phenotypic variability within a freely interbreeding population are incomplete. Here, we investigated the genetic basis of red and black head colour in the Gouldian finch (Erythrura gouldiae), a classic polymorphic system in which naturally occurring colour morphs also display differences in aggressivity and reproductive success. We show that the candidate locus is a small (approx. 70 kb) non-coding region mapping to the Z chromosome near the Follistatin (FST) gene. Unlike recent findings in other systems where phenotypic morphs are explained by large inversions containing hundreds of genes (so-called supergenes), we did not identify any structural rearrangements between the two haplotypes using linked-read sequencing technology. Nucleotide divergence between the red and black alleles was high when compared to the remainder of the Z chromosome, consistent with their maintenance as balanced polymorphisms over several million years. Our results illustrate how pleiotropic phenotypes can arise from simple genetic variation, probably regulatory in nature.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cristiana I Marques
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Pedro M Araújo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
- Centro de Ciências do Mar e do Ambiente, Departamento de Ciências da Vida, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - Stephen Sabatino
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Małgorzata A Gazda
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Ota N, Gahr M, Soma M. Couples showing off: Audience promotes both male and female multimodal courtship display in a songbird. SCIENCE ADVANCES 2018; 4:eaat4779. [PMID: 30306131 PMCID: PMC6170041 DOI: 10.1126/sciadv.aat4779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Social environments can shape animal communication. Although mutual courtship displays are generally thought to function in private communication between a male and a female, we provide experimental evidence that they work in a broader social context than previously thought. We examined the audience effect on mutual courtship in blue-capped cordon-bleus, a socially monogamous songbird. This species is characterized by conspicuous courtship shared between sexes: Both sexes sing songs and sometimes add a unique dance display that looks like human tap dancing. We found that in both sexes, multimodal courtship displays (song accompanied by dance) were promoted in the presence of an audience, especially if it was the opposite sex. In contrast, unimodal displays (song without dance) were suppressed by audiences. Because birds directed the courtship dancing toward their partners (but not the audience), multimodal courtship displays are likely meant to advertise their current mating status to other cordon-bleus.
Collapse
Affiliation(s)
- Nao Ota
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 0600810, Japan
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 0600810, Japan
| |
Collapse
|
7
|
Genetic diversity through time and space: diversity and demographic history from natural history specimens and serially sampled contemporary populations of the threatened Gouldian finch (Erythrura gouldiae). CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|