2
|
Talla V, Johansson A, Dincă V, Vila R, Friberg M, Wiklund C, Backström N. Lack of gene flow: Narrow and dispersed differentiation islands in a triplet ofLeptideabutterfly species. Mol Ecol 2019; 28:3756-3770. [DOI: 10.1111/mec.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Venkat Talla
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Uppsala Sweden
| | - Anna Johansson
- Department of Medical Biochemistry and Microbiology Uppsala Biomedical Centre (BMC) Uppsala Sweden
| | - Vlad Dincă
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐UPF) Barcelona Spain
| | - Magne Friberg
- Department of Biology, Biodiversity Unit Lund University Lund Sweden
| | - Christer Wiklund
- Division of Ecology Department of Zoology Stockholm University Stockholm Sweden
| | - Niclas Backström
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Uppsala Sweden
| |
Collapse
|
3
|
Westram AM, Ravinet M. Land ahoy? Navigating the genomic landscape of speciation while avoiding shipwreck. J Evol Biol 2018; 30:1522-1525. [PMID: 28786189 DOI: 10.1111/jeb.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- A M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - M Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Simon A, Bierne N, Welch JJ. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns. Evol Lett 2018; 2:472-498. [PMID: 30283696 PMCID: PMC6145440 DOI: 10.1002/evl3.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Natural selection plays a variety of roles in hybridization, speciation, and admixture. Most research has focused on two extreme cases: crosses between closely related inbred lines, where hybrids are fitter than their parents, or crosses between effectively isolated species, where hybrids suffer severe breakdown. But many natural populations must fall into intermediate regimes, with multiple types of gene interaction, and these are more difficult to study. Here, we develop a simple fitness landscape model, and show that it naturally interpolates between previous modeling approaches, which were designed for the extreme cases, and invoke either mildly deleterious recessives, or discrete hybrid incompatibilities. Our model yields several new predictions, which we test with genomic data from Mytilus mussels, and published data from plants (Zea, Populus, and Senecio) and animals (Mus, Teleogryllus, and Drosophila). The predictions are generally supported, and the model explains a number of surprising empirical patterns. Our approach enables novel and complementary uses of genome-wide datasets, which do not depend on identifying outlier loci, or "speciation genes" with anomalous effects. Given its simplicity and flexibility, and its predictive successes with a wide range of data, the approach should be readily extendable to other outstanding questions in the study of hybridization.
Collapse
Affiliation(s)
- Alexis Simon
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - Nicolas Bierne
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| |
Collapse
|
5
|
Campbell CR, Poelstra JW, Yoder AD. What is Speciation Genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly063] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - J W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Rafati N, Blanco-Aguiar JA, Rubin CJ, Sayyab S, Sabatino SJ, Afonso S, Feng C, Alves PC, Villafuerte R, Ferrand N, Andersson L, Carneiro M. A genomic map of clinal variation across the European rabbit hybrid zone. Mol Ecol 2018; 27:1457-1478. [PMID: 29359877 DOI: 10.1111/mec.14494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
Abstract
Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.
Collapse
Affiliation(s)
- Nima Rafati
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - José A Blanco-Aguiar
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto de Investigacion en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carl J Rubin
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Stephen J Sabatino
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Chungang Feng
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Paulo C Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland, South Africa
| | - Leif Andersson
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff ( Phylloscopus collybita abietinus/P. tristis). G3-GENES GENOMES GENETICS 2017; 7:3983-3998. [PMID: 29054864 PMCID: PMC5714495 DOI: 10.1534/g3.117.300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)—two recently diverged species which differ in morphology, plumage, song, habitat, and migration—to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
Collapse
|