1
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2025; 41:23-32. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Fabrèges D, Corominas-Murtra B, Moghe P, Kickuth A, Ichikawa T, Iwatani C, Tsukiyama T, Daniel N, Gering J, Stokkermans A, Wolny A, Kreshuk A, Duranthon V, Uhlmann V, Hannezo E, Hiiragi T. Temporal variability and cell mechanics control robustness in mammalian embryogenesis. Science 2024; 386:eadh1145. [PMID: 39388574 DOI: 10.1126/science.adh1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/02/2023] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
How living systems achieve precision in form and function despite their intrinsic stochasticity is a fundamental yet ongoing question in biology. We generated morphomaps of preimplantation embryogenesis in mouse, rabbit, and monkey embryos, and these morphomaps revealed that although blastomere divisions desynchronized passively, 8-cell embryos converged toward robust three-dimensional shapes. Using topological analysis and genetic perturbations, we found that embryos progressively changed their cellular connectivity to a preferred topology, which could be predicted by a physical model in which actomyosin contractility and noise facilitate topological transitions, lowering surface energy. This mechanism favored regular embryo packing and promoted a higher number of inner cells in the 16-cell embryo. Synchronized division reduced embryo packing and generated substantially more misallocated cells and fewer inner-cell-mass cells. These findings suggest that stochasticity in division timing contributes to robust patterning.
Collapse
Affiliation(s)
- Dimitri Fabrèges
- Hubrecht Institute, Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Prachiti Moghe
- Hubrecht Institute, Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alison Kickuth
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takafumi Ichikawa
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Nathalie Daniel
- UVSQ, INRAE, BREED, Paris-Saclay University, Jouy-en-Josas, France
| | | | | | - Adrian Wolny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Véronique Duranthon
- UVSQ, INRAE, BREED, Paris-Saclay University, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Takashi Hiiragi
- Hubrecht Institute, Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Promy NT, Newberry M, Gulisija D. Rapid evolution of phenotypic plasticity in patchy habitats. Sci Rep 2023; 13:19158. [PMID: 37932330 PMCID: PMC10628295 DOI: 10.1038/s41598-023-45912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Phenotypic plasticity may evolve rapidly, enabling a population's persistence in the face of sudden environmental change. Rapid evolution can occur when there is considerable genetic polymorphism at selected loci. We propose that balancing selection could be one of the mechanisms that sustain such polymorphism for plasticity. We use stochastic Monte Carlo simulations and deterministic analysis to investigate the evolution of a plasticity modifier locus in structured populations inhabiting favorable and adverse environments, i.e. patchy habitats. We survey a wide range of parameters including selective pressures on a target (structural) locus, plasticity effects, population sizes, and migration patterns between demes including periodic or continuous bidirectional and source-sink dynamics. We find that polymorphism in phenotypic plasticity can be maintained under a wide range of environmental scenarios in both favorable and adverse environments due to the balancing effect of population structure in patchy habitats. This effect offers a new plausible explanation for the rapid evolution of plasticity in nature: Phenotypic plasticity may rapidly evolve from genetic variation maintained by balancing selection if the population has experienced immigration from populations under different selection regimes.
Collapse
Affiliation(s)
- Nawsheen T Promy
- Department of Computer Science, University of New Mexico, Albuquerque, USA
| | - Mitchell Newberry
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA
| | - Davorka Gulisija
- Department of Computer Science, University of New Mexico, Albuquerque, USA.
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Draghi JA. Bet-hedging via dispersal aids the evolution of plastic responses to unreliable cues. J Evol Biol 2023. [PMID: 37224140 DOI: 10.1111/jeb.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023]
Abstract
Adaptive plasticity is expected to evolve when informative cues predict environmental variation. However, plastic responses can be maladaptive even when those cues are informative, if prediction mistakes are shared across members of a generation. These fitness costs can constrain the evolution of plasticity when initial plastic mutants use of cues of only moderate reliability. Here, we model the barriers to the evolution of plasticity produced by these constraints and show that dispersal across a metapopulation can overcome them. Constraints are also lessened, though not eliminated, when plastic responses are free to evolve gradually and in concert with increased reliability. Each of these factors be viewed as a form of bet-hedging: by lessening correlations in the fates of relatives, dispersal acts as diversifying bet-hedging, while producing submaximal responses to a cue can be understood as a conservative bet-hedging strategy. While poor information may constrain the evolution of plasticity, the opportunity for bet-hedging may predict when that constraint can be overcome.
Collapse
Affiliation(s)
- Jeremy A Draghi
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Singhal P, Veturi Y, Dudek SM, Lucas A, Frase A, van Steen K, Schrodi SJ, Fasel D, Weng C, Pendergrass R, Schaid DJ, Kullo IJ, Dikilitas O, Sleiman PMA, Hakonarson H, Moore JH, Williams SM, Ritchie MD, Verma SS. Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets. Am J Hum Genet 2023; 110:575-591. [PMID: 37028392 PMCID: PMC10119154 DOI: 10.1016/j.ajhg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Dudek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Frase
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristel van Steen
- Department of Human Genetics, Katholieke Universiteit Leuven, ON4 Herestraat 49, 3000 Leuven, Belgium
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - David Fasel
- Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | - Hakon Hakonarson
- Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Draghi JA, Ogbunugafor CB. Exploring the expanse between theoretical questions and experimental approaches in the modern study of evolvability. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:8-17. [PMID: 35451559 PMCID: PMC10083935 DOI: 10.1002/jez.b.23134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Despite several decades of computational and experimental work across many systems, evolvability remains on the periphery with regards to its status as a widely accepted and regularly applied theoretical concept. Here we propose that its marginal status is partly a result of large gaps between the diverse but disconnected theoretical treatments of evolvability and the relatively narrower range of studies that have tested it empirically. To make this case, we draw on a range of examples-from experimental evolution in microbes, to molecular evolution in proteins-where attempts have been made to mend this disconnect. We highlight some examples of progress that has been made and point to areas where synthesis and translation of existing theory can lead to further progress in the still-new field of empirical measurements of evolvability.
Collapse
Affiliation(s)
- Jeremy A Draghi
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - C Brandon Ogbunugafor
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Matthey-Doret R, Draghi JA, Whitlock MC. Plasticity via feedback reduces the cost of developmental instability. Evol Lett 2020; 4:570-580. [PMID: 33312691 PMCID: PMC7719546 DOI: 10.1002/evl3.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Costs of plasticity are thought to have important physiological and evolutionary consequences. A commonly predicted cost to plasticity is that plastic genotypes are likely to suffer from developmental instability. Adaptive plasticity requires that the developing organism can in some way sense what environment it is in or how well it is performing in that environment. These two information pathways—an “environmental signal” or a “performance signal” that indicates how well a developing phenotype matches the optimum in the current environment—can differ in their consequences for the organism and its evolution. Here, we consider how developmental instability might emerge as a side‐effect of these two distinct mechanisms. Because a performance cue allows a regulatory feedback loop connecting a trait to a feedback signal, we hypothesized that plastic genotypes using a performance signal would be more developmentally robust compared to those using a purely environmental signal. Using a numerical model of a network of gene interactions, we show that plasticity comes at a cost of developmental instability when the plastic response is mediated via an environmental signal, but not when it is mediated via a performance signal. We also show that a performance signal mechanism can evolve even in a constant environment, leading to genotypes preadapted for plasticity to novel environments even in populations without a history of environmental heterogeneity.
Collapse
Affiliation(s)
- Remi Matthey-Doret
- Institute of Ecology and Evolution Universität Bern Bern 3012 Switzerland.,Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Jeremy A Draghi
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Michael C Whitlock
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
9
|
Rocabert C, Beslon G, Knibbe C, Bernard S. Phenotypic noise and the cost of complexity. Evolution 2020; 74:2221-2237. [PMID: 32820537 DOI: 10.1111/evo.14083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
Experimental studies demonstrate the existence of phenotypic diversity despite constant genotype and environment. Theoretical models based on a single phenotypic character predict that during an adaptation event, phenotypic noise should be positively selected far from the fitness optimum because it increases the fitness of the genotype, and then be selected against when the population reaches the optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive evolution. However, it is unclear how the selective advantage of phenotypic noise is linked to the rate of evolution, and whether any advantage would hold for more realistic, multidimensional phenotypes. Indeed, complex organisms suffer a cost of complexity, where beneficial mutations become rarer as the number of phenotypic characters increases. Using a quantitative genetics approach, we first show that for a one-dimensional phenotype, phenotypic noise promotes adaptive evolution on plateaus of positive fitness, independently from the direct selective advantage on fitness. Second, we show that for multidimensional phenotypes, phenotypic noise evolves to a low-dimensional configuration, with elevated noise in the direction of the fitness optimum. Such a dimensionality reduction of the phenotypic noise promotes adaptive evolution and numerical simulations show that it reduces the cost of complexity.
Collapse
Affiliation(s)
- Charles Rocabert
- Inria, 78150 Rocquencourt, France.,Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
| | - Guillaume Beslon
- Inria, 78150 Rocquencourt, France.,LIRIS, University of Lyon, INSA-Lyon, UMR5205, Lyon, F-69621, France
| | - Carole Knibbe
- Inria, 78150 Rocquencourt, France.,CarMeN Laboratory, University of Lyon, INSA-Lyon, INSERM U1060, Lyon, F-69621, France
| | - Samuel Bernard
- Inria, 78150 Rocquencourt, France.,Institut Camille Jordan, CNRS, University of Lyon, UMR5208, Lyon, F-69622, France
| |
Collapse
|