1
|
Li J, Zhao W, Zhu J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z. Temperature Elevation during Semen Delivery Deteriorates Boar Sperm Quality by Promoting Apoptosis. Animals (Basel) 2023; 13:3203. [PMID: 37893927 PMCID: PMC10603671 DOI: 10.3390/ani13203203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semen delivery practice is crucial to the efficiency of artificial insemination using high-quality boar sperm. The present study aimed to evaluate the effect of a common semen delivery method, a Styrofoam box, under elevated temperatures on boar sperm quality and functionality and to investigate the underlying molecular responses of sperm to the temperature rise. Three pooled semen samples from 10 Duroc boars (3 ejaculates per boar) were used in this study. Each pooled semen sample was divided into two aliquots. One aliquot was stored at a constant 17 °C as the control group. Another one was packaged in a well-sealed Styrofoam box and placed in an incubator at 37 °C for 24 h to simulate semen delivery on hot summer days and subsequently transferred to a refrigerator at 17 °C for 3 days. The semen temperature was continuously monitored. The semen temperature was 17 °C at 0 h of storage and reached 20 °C at 5 h, 30 °C at 14 h, and 37 °C at 24 h. For each time point, sperm quality and functionality, apoptotic changes, expression levels of phosphorylated AMPK, and heat shock proteins HSP70 and HSP90 were determined by CASA, flow cytometry, and Western blotting. The results showed that elevated temperature during delivery significantly deteriorated boar sperm quality and functionality after 14 h of delivery. Storage back to 17 °C did not recover sperm motility. An increased temperature during delivery apparently promoted the conversion of sperm early apoptosis to late apoptosis, showing a significant increase in the expression levels of Bax and Caspase 3. The levels of phosphorylated AMPK were greatly induced by the temperature rise to 20 °C during delivery but reduced thereafter. With the temperature elevation, expression levels of HSP70 and HSP90 were notably increased. Our results indicate that a temperature increase during semen delivery greatly damages sperm quality and functionality by promoting sperm apoptosis. HSP70 and HSP90 could participate in boar sperm resistance to temperature changes by being associated with AMPK activation and anti-apoptotic processes.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450000, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Massey MD, Fredericks MK, Malloy D, Arif S, Hutchings JA. Differential reproductive plasticity under thermal variability in a freshwater fish ( Danio rerio). Proc Biol Sci 2022; 289:20220751. [PMID: 36069011 PMCID: PMC9449469 DOI: 10.1098/rspb.2022.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human-driven increases in global mean temperatures are associated with concomitant increases in thermal variability. Yet, few studies have explored the impacts of thermal variability on fitness-related traits, limiting our ability to predict how organisms will respond to dynamic thermal changes. Among the myriad organismal responses to thermal variability, one of the most proximate to fitness—and, thus, a population's ability to persist—is reproduction. Here, we examine how a model freshwater fish (Danio rerio) responds to diel thermal fluctuations that span the species's viable developmental range of temperatures. We specifically investigate reproductive performance metrics including spawning success, fecundity, egg provisioning and sperm concentration. Notably, we apply thermal variability treatments during two ontogenetic timepoints to disentangle the relative effects of developmental plasticity and reversible acclimation. We found evidence of direct, negative effects of thermal variability during later ontogenetic stages on reproductive performance metrics. We also found complex interactive effects of early and late-life exposure to thermal variability, with evidence of beneficial acclimation of spawning success and modification of the relationship between fecundity and egg provisioning. Our findings illuminate the plastic life-history modifications that fish may undergo as their thermal environments become increasingly variable.
Collapse
Affiliation(s)
- Melanie D Massey
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - M Kate Fredericks
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - David Malloy
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2.,Zebrafish Core Facility, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suchinta Arif
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2
| | - Jeffrey A Hutchings
- Department of Biology, Life Sciences Centre, Dalhousie University, 6299 South St, Halifax, NS, Canada B3H 4R2.,Flødevigen Marine Research Station, Institute of Marine Research, Bergen, Norway.,Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
3
|
Wang WWY, Gunderson AR. The Physiological and Evolutionary Ecology of Sperm Thermal Performance. Front Physiol 2022; 13:754830. [PMID: 35399284 PMCID: PMC8987524 DOI: 10.3389/fphys.2022.754830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Ongoing anthropogenic climate change has increased attention on the ecological and evolutionary consequences of thermal variation. Most research in this field has focused on the physiology and behavior of diploid whole organisms. The thermal performance of haploid gamete stages directly tied to reproductive success has received comparatively little attention, especially in the context of the evolutionary ecology of wild (i.e., not domesticated) organisms. Here, we review evidence for the effects of temperature on sperm phenotypes, emphasizing data from wild organisms whenever possible. We find that temperature effects on sperm are pervasive, and that above normal temperatures in particular are detrimental. That said, there is evidence that sperm traits can evolve adaptively in response to temperature change, and that adaptive phenotypic plasticity in sperm traits is also possible. We place results in the context of thermal performance curves, and encourage this framework to be used as a guide for experimental design to maximize ecological relevance as well as the comparability of results across studies. We also highlight gaps in our understanding of sperm thermal performance that require attention to more fully understand thermal adaptation and the consequences of global change.
Collapse
|
4
|
Dobler R, Charette M, Kaplan K, Turnell BR, Reinhardt K. Divergent natural selection alters male sperm competition success in Drosophila melanogaster. Ecol Evol 2022; 12:e8567. [PMID: 35222953 PMCID: PMC8848461 DOI: 10.1002/ece3.8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Sexually selected traits may also be subject to non-sexual selection. If optimal trait values depend on environmental conditions, then "narrow sense" (i.e., non-sexual) natural selection can lead to local adaptation, with fitness in a certain environment being highest among individuals selected under that environment. Such adaptation can, in turn, drive ecological speciation via sexual selection. To date, most research on the effect of narrow-sense natural selection on sexually selected traits has focused on precopulatory measures like mating success. However, postcopulatory traits, such as sperm function, can also be under non-sexual selection, and have the potential to contribute to population divergence between different environments. Here, we investigate the effects of narrow-sense natural selection on male postcopulatory success in Drosophila melanogaster. We chose two extreme environments, low oxygen (10%, hypoxic) or high CO2 (5%, hypercapnic) to detect small effects. We measured the sperm defensive (P1) and offensive (P2) capabilities of selected and control males in the corresponding selection environment and under control conditions. Overall, selection under hypoxia decreased both P1 and P2, while selection under hypercapnia had no effect. Surprisingly, P1 for both selected and control males was higher under both ambient hypoxia and ambient hypercapnia, compared to control conditions, while P2 was lower under hypoxia. We found limited evidence for local adaptation: the positive environmental effect of hypoxia on P1 was greater in hypoxia-selected males than in controls. We discuss the implications of our findings for the evolution of postcopulatory traits in response to non-sexual and sexual selection.
Collapse
Affiliation(s)
- Ralph Dobler
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Marc Charette
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Katrin Kaplan
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
| | - Biz R. Turnell
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Klaus Reinhardt
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
Male sperm storage impairs sperm quality in the zebrafish. Sci Rep 2021; 11:16689. [PMID: 34404815 PMCID: PMC8371167 DOI: 10.1038/s41598-021-94976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
Variation in sperm traits is widely documented both at inter- and intraspecific level. However, sperm traits vary also between ejaculates of the same male, due for example, to fluctuations in female availability. Variability in the opportunities to mate can indeed have important consequences for sperm traits, as it determines how often sperm are used, and thus the rate at which they are produced and how long they are stored before the mating. While being stored within males’ bodies, sperm are subjected to ageing due to oxidative stress. Sperm storage may significantly impair sperm quality, but evidence linking male sperm storage and variation in sperm traits is still scarce. Here, we tested the effect of the duration of sperm storage on within-male variation in sperm traits in the zebrafish, Danio rerio. We found that without mating opportunities, sperm number increased as storage duration increased, indicating that sperm continue to be produced and accumulate over time within males without being discharged in another way. Long sperm storage (12 days) was associated with an overall impairment in sperm quality, namely sperm motility, sperm longevity, and sperm DNA fragmentation, indicating that sperm aged, and their quality declined during storage. Our results confirm that male sperm storage may generate substantial variation in sperm phenotype, a source of variation which is usually neglected but that should be accounted for in experimental protocols aiming to assay sperm traits or maximise fertilization success.
Collapse
|
6
|
Pilakouta N, Ålund M. Editorial: Sexual selection and environmental change: what do we know and what comes next? Curr Zool 2021; 67:293-298. [PMID: 34616921 PMCID: PMC8488989 DOI: 10.1093/cz/zoab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Natalie Pilakouta
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D 75236 Uppsala, Sweden
| |
Collapse
|