1
|
Rosengrave PC, Lymbery RA, Evans JP. Patterns of sperm swimming behaviour depend on male mating tactic and spawning environment in chinook salmon. Sci Rep 2024; 14:25680. [PMID: 39465254 PMCID: PMC11514174 DOI: 10.1038/s41598-024-76115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Many species exhibit alternative mating tactics (ARTs), with larger socially dominant males competing for females and smaller males adopting "sneaker" strategies to exploit fertilisation opportunities without competition or courtship. Females typically prefer larger socially dominant males, but their ability to manipulate mating or fertilisation outcomes is largely unknown. Here, using chinook salmon Oncorhynchus tshawytscha, we examined whether the female's ovarian fluid (OF) differentially influences the temporal patterns of sperm swimming traits in ejaculates from non-preferred sneaker ('parr') and preferred (dominant) males. Results demonstrate that OF improves sperm swimming speed and linearity compared to river water, regardless of male mating tactic. We report a novel tactic-specific difference in sperm linearity in which parr male sperm initially maintain straighter trajectories in river water, compared to dominant males, but then rapidly change to less linear and more circular paths over time. Intriguingly, we show that OF counteracts this change in sperm linearity in parr males so that patterns become indistinguishable from dominants when parr sperm swim in OF. Together, these results show that male chinook salmon exhibit differential sperm trait investment strategies depending on reproductive tactic.
Collapse
Affiliation(s)
| | - Rowan A Lymbery
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Jonathan P Evans
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
2
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
3
|
Kodzik N, Ciereszko A, Szczepkowska B, Malinowska A, Dietrich MA. Comparative proteomic analysis of the ovarian fluid and eggs of Siberian sturgeon. BMC Genomics 2024; 25:451. [PMID: 38714919 PMCID: PMC11077782 DOI: 10.1186/s12864-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, Inland Fisheries Institute in Olsztyn, Pozezdrze, Pieczarki, 11-610, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Warszawa, 02-106, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland.
| |
Collapse
|
4
|
Gueho A, Żarski D, Rime H, Guével B, Com E, Lavigne R, Nguyen T, Montfort J, Pineau C, Bobe J. Evolutionarily conserved ovarian fluid proteins are responsible for extending egg viability in salmonid fish. Sci Rep 2024; 14:9651. [PMID: 38671194 PMCID: PMC11053066 DOI: 10.1038/s41598-024-60118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In contrast to most fishes, salmonids exhibit the unique ability to hold their eggs for several days after ovulation without significant loss of viability. During this period, eggs are held in the body cavity in a biological fluid, the coelomic fluid (CF) that is responsible for preserving egg viability. To identify CF proteins responsible for preserving egg viability, a proteomic comparison was performed using 3 salmonid species and 3 non-salmonid species to identify salmonid-specific highly abundant proteins. In parallel, rainbow trout CF fractions were purified and used in a biological test to estimate their egg viability preservation potential. The most biologically active CF fractions were then subjected to mass spectrometry analysis. We identified 50 proteins overabundant in salmonids and present in analytical fractions with high egg viability preservation potential. The identity of these proteins illuminates the biological processes participating in egg viability preservation. Among identified proteins of interest, the ovarian-specific expression and abundance in CF at ovulation of N-acetylneuraminic acid synthase a (Nansa) suggest a previously unsuspected role. We show that salmonid CF is a complex biological fluid containing a diversity of proteins related to immunity, calcium binding, lipid metabolism, proteolysis, extracellular matrix and sialic acid metabolic pathway that are collectively responsible for preserving egg viability.
Collapse
Affiliation(s)
- Aurélie Gueho
- INRAE UR1037, Fish Physiology and Genomics, 35000, Rennes, France
| | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Hélène Rime
- INRAE UR1037, Fish Physiology and Genomics, 35000, Rennes, France
| | - Blandine Guével
- Inserm, EHESP, Irset, UMR_S 1085, Univ Rennes, 35000, Rennes, France
- CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Univ Rennes, 35000, Rennes, France
| | - Emmanuelle Com
- Inserm, EHESP, Irset, UMR_S 1085, Univ Rennes, 35000, Rennes, France
- CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Univ Rennes, 35000, Rennes, France
| | - Régis Lavigne
- Inserm, EHESP, Irset, UMR_S 1085, Univ Rennes, 35000, Rennes, France
- CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Univ Rennes, 35000, Rennes, France
| | - Thaovi Nguyen
- INRAE UR1037, Fish Physiology and Genomics, 35000, Rennes, France
| | - Jérôme Montfort
- INRAE UR1037, Fish Physiology and Genomics, 35000, Rennes, France
| | - Charles Pineau
- Inserm, EHESP, Irset, UMR_S 1085, Univ Rennes, 35000, Rennes, France
- CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Univ Rennes, 35000, Rennes, France
| | - Julien Bobe
- INRAE UR1037, Fish Physiology and Genomics, 35000, Rennes, France.
| |
Collapse
|
5
|
Garlovsky MD, Ahmed-Braimah YH. Evolutionary Quantitative Proteomics of Reproductive Protein Divergence in Drosophila. Mol Cell Proteomics 2023; 22:100610. [PMID: 37391044 PMCID: PMC10407754 DOI: 10.1016/j.mcpro.2023.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2023] [Accepted: 06/04/2023] [Indexed: 07/02/2023] Open
Abstract
Reproductive traits often evolve rapidly between species. Understanding the causes and consequences of this rapid divergence requires characterization of female and male reproductive proteins and their effect on fertilization success. Species in the Drosophila virilis clade exhibit rampant interspecific reproductive incompatibilities, making them ideal for studies on diversification of reproductive proteins and their role in speciation. Importantly, the role of intraejaculate protein abundance and allocation in interspecific divergence is poorly understood. Here, we identify and quantify the transferred male ejaculate proteome using multiplexed isobaric labeling of the lower female reproductive tract before and immediately after mating using three species of the virilis group. We identified over 200 putative male ejaculate proteins, many of which show differential abundance between species, suggesting that males transfer a species-specific allocation of seminal fluid proteins during copulation. We also identified over 2000 female reproductive proteins, which contain female-specific serine-type endopeptidases that showed differential abundance between species and elevated rates of molecular evolution, similar to that of some male seminal fluid proteins. Our findings suggest that reproductive protein divergence can also manifest in terms of species-specific protein abundance patterns.
Collapse
|
6
|
Fernlund Isaksson E, Fitzpatrick JL. Examining the potential for resource-dependent female reproductive fluid-sperm interactive effects in a livebearing fish. J Evol Biol 2023; 36:709-719. [PMID: 36891998 DOI: 10.1111/jeb.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 03/10/2023]
Abstract
Sexually selected traits can be costly to produce and maintain. The amount of resources available to an individual is therefore expected to influence investment in costly sexual traits. While resource-dependent expression of sexually selected traits has traditionally been examined in males, resource limitation can also influence how sexual selection operates in females. Female reproductive fluids are thought to be costly to produce and may play an important role in shaping the outcome of postcopulatory sexual selection by influencing sperm performance. However, we know surprisingly little about whether and how female reproductive fluids are influenced by resource limitation. Here, we examine if resource restriction influences female reproductive fluid-sperm interactive effects in the pygmy halfbeak (Dermogenys collettei), a small internally fertilizing freshwater fish where females store sperm. After experimentally altering female diets (high vs. restricted diets), we compared how female reproductive fluids influence two key metrics of sperm quality: sperm viability and velocity. While female reproductive fluids enhanced sperm viability and velocity, we found no evidence that female diet influenced the interactive effect between female reproductive fluids and sperm viability or velocity. Our findings build on the growing evidence that female reproductive fluids influence sperm performance and call for further attention to be devoted to understanding how resource quantity and quality influence how female reproductive fluids affect sperm performance.
Collapse
|
7
|
Graziano M, Palit S, Yethiraj A, Immler S, Gage MJG, Purchase CF. Frequency-dependent viscosity of salmon ovarian fluid has biophysical implications for sperm-egg interactions. J Exp Biol 2023; 226:jeb244712. [PMID: 36511132 PMCID: PMC10086386 DOI: 10.1242/jeb.244712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms that alter the chemical environment in which gametes perform. In fish, this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While the biochemical effects of ovarian fluid in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected wild Atlantic salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox-Merz rule below 7.6 Hz and infringes it above this level, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependent structural network with relevant implications for sperm energetics and fertilisation dynamics. This article has an associated ECR Spotlight interview with Marco Graziano.
Collapse
Affiliation(s)
- Marco Graziano
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
- Department of Biological Sciences, Centre for Ecology, Evolution, and Conservation, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Swomitra Palit
- Department of Physics and Physical Oceanography, Soft Matter Lab, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Soft Matter Lab, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Simone Immler
- Department of Biological Sciences, Centre for Ecology, Evolution, and Conservation, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew J. G. Gage
- Department of Biological Sciences, Centre for Ecology, Evolution, and Conservation, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Deceased
| | - Craig F. Purchase
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| |
Collapse
|
8
|
Kekäläinen J, Hiltunen J, Jokiniemi A, Kuusipalo L, Heikura M, Leppänen J, Malinen M. Female-induced selective modification of sperm protein SUMOylation-potential mechanistic insights into the non-random fertilization in humans. J Evol Biol 2022; 35:254-264. [PMID: 35000241 PMCID: PMC9305144 DOI: 10.1111/jeb.13980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
In many species, mate choice continues after the mating via female‐ or egg‐derived biochemical factors that induce selective changes in sperm pre‐fertilization physiology and behaviour. Recent studies have indicated that gamete‐mediated mate choice likely occurs also in humans, but the mechanistic basis of the process has remained virtually unexplored. Here, we investigated whether female‐induced modifications in sperm protein SUMOylation (post‐translational modification of the proteome) could serve as a novel mechanism for gamete‐mediated mate choice in humans. We treated the sperm of ten males with the oocyte‐surrounding bioactive liquid (follicular fluid) of five females and investigated motility, viability and global protein SUMOylation status of the sperm in all (n = 50) of these male–female combinations (full‐factorial design). All the measured sperm traits were affected by male–female combinations, and sperm protein SUMOylation status was also negatively associated with sperm motility. Furthermore, our results indicate that female‐induced sperm protein SUMOylation is selective, potentially allowing females to increase sperm motility in some males, whereas decreasing it in the others. Consequently, our findings suggest that follicular fluid may non‐randomly modify the structure and function of sperm proteome and in this way facilitate gamete‐mediated mate choice in humans and possibly many other species. However, due to the relatively low number of female subjects and their potential infertility problems, our results should be replicated with larger subset of fully fertile women.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Johannes Hiltunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | - Marjo Heikura
- Eastern Finland Laboratory Centre Joint Authority (ISLAB), North Savonia Regional Laboratory, Kuopio, Finland
| | | | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|