1
|
Iglesias Pastrana C, Navas González FJ, Macri M, Martínez Martínez MDA, Ciani E, Delgado Bermejo JV. Identification of novel genetic loci related to dromedary camel (Camelus dromedarius) morphometrics, biomechanics, and behavior by genome-wide association studies. BMC Vet Res 2024; 20:418. [PMID: 39294626 PMCID: PMC11409489 DOI: 10.1186/s12917-024-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.
Collapse
Affiliation(s)
| | | | - Martina Macri
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, Spain
- Animal Breeding Consulting S.L, Parque Científico Tecnológico de Córdoba, Córdoba, Spain
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, Faculty of Veterinary Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | |
Collapse
|
2
|
Chapple DG, Naimo AC, Brand JA, Michelangeli M, Martin JM, Goulet CT, Brunton DH, Sih A, Wong BBM. Biological invasions as a selective filter driving behavioral divergence. Nat Commun 2022; 13:5996. [PMID: 36220842 PMCID: PMC9553908 DOI: 10.1038/s41467-022-33755-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Biological invasions are a multi-stage process (i.e., transport, introduction, establishment, spread), with each stage potentially acting as a selective filter on traits associated with invasion success. Behavior (e.g., exploration, activity, boldness) plays a key role in facilitating species introductions, but whether invasion acts as a selective filter on such traits is not well known. Here we capitalize on the well-characterized introduction of an invasive lizard (Lampropholis delicata) across three independent lineages throughout the Pacific, and show that invasion shifted behavioral trait means and reduced among-individual variation-two key predictions of the selective filter hypothesis. Moreover, lizards from all three invasive ranges were also more behaviorally plastic (i.e., greater within-individual variation) than their native range counterparts. We provide support for the importance of selective filtering of behavioral traits in a widespread invasion. Given that invasive species are a leading driver of global biodiversity loss, understanding how invasion selects for specific behaviors is critical for improving predictions of the effects of alien species on invaded communities.
Collapse
Affiliation(s)
- David G Chapple
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Annalise C Naimo
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Department of Environmental Science and Policy, University of California at Davis, Davis, CA, USA
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jake M Martin
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Celine T Goulet
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Dianne H Brunton
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California at Davis, Davis, CA, USA
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Rayner JG, Sturiale SL, Bailey NW. The persistence and evolutionary consequences of vestigial behaviours. Biol Rev Camb Philos Soc 2022; 97:1389-1407. [PMID: 35218283 PMCID: PMC9540461 DOI: 10.1111/brv.12847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Abstract
Behavioural traits are often noted to persist after relaxation or removal of associated selection pressure, whereas it has been observed that morphological traits under similar conditions appear to decay more rapidly. Despite this, persistent non‐adaptive, ‘vestigial’ behavioural variation has received little research scrutiny. Here we review published examples of vestigial behavioural traits, highlighting their surprising prevalence, and argue that their further study can reveal insights about the widely debated role of behaviour in evolution. Some vestigial behaviours incur fitness costs, so may act as a drag on adaptive evolution when that adaptation occurs via trait loss or reversal. In other cases, vestigial behaviours can contribute to future evolutionary trajectories, for example by preserving genetic and phenotypic variation which is later co‐opted by selection during adaptive evolution or diversification, or through re‐emergence after ancestral selection pressures are restored. We explore why vestigial behaviours appear prone to persistence. Behavioural lag may be a general phenomenon arising from relatively high levels of non‐genetic variation in behavioural expression, and pleiotropic constraint. Long‐term persistence of non‐adaptive behavioural traits could also result when their expression is associated with morphological features which might be more rapidly lost or reduced. We propose that vestigial behaviours could provide a substrate for co‐option by novel selective forces, and advocate further study of the fate of behavioural traits following relaxed and reversed selection. Vestigial behaviours have been relatively well studied in the context of antipredator behaviours, but they are far from restricted to this ecological context, and so deserve broader consideration. They also have practical importance, with mixed evidence, for example, as to whether predator/parasite‐avoidance behaviours are rapidly lost in wildlife refuges and captivity. We identify important areas for future research to help determine whether vestigial behaviours essentially represent a form of evolutionary lag, or whether they have more meaningful evolutionary consequences distinct from those of other vestigial and behavioural traits.
Collapse
Affiliation(s)
- Jack G Rayner
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| | - Samantha L Sturiale
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| | - Nathan W Bailey
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| |
Collapse
|