1
|
Hadi E, Dorittke T, Kienast P, Binder J, Glatter S, Hershko-Klement A, Lerman-Sagie T, Prayer D, Kasprian G. Magnetic resonance imaging and tractography of sensorimotor tracts in fetuses with intraventricular hemorrhage: feasibility and added prognostic value. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:626-634. [PMID: 39410711 DOI: 10.1002/uog.29109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVES To assess the feasibility, characteristics and prognostic value of prenatal visualization of the corticospinal tracts (CSTs) using diffusion-weighted magnetic resonance imaging (MRI)-based tractography in fetuses with intraventricular hemorrhage (IVH). METHODS This was a retrospective single-center cohort study of singleton fetuses diagnosed with IVH on MRI from January 2011 to December 2018. The left and right CSTs were reconstructed according to an in-utero diffusion tensor imaging sequence using a multi-region of interest (ROI) deterministic tractography approach. The CSTs were segmented by two polygonal ROI: at the level of the posterior limb of the internal capsule and the crus cerebri. The morphology and integrity of the CSTs were assessed visually. Internal capsule and crus cerebri apparent diffusion coefficient and fractional anisotropy values were measured. Postnatal motor function data were obtained from the parents using the functional status scale. RESULTS A total of 35 fetuses with IVH (mean ± SD gestational age, 29.1 ± 5.1 (range, 19.9-38.9) weeks) were included in the analysis. Parenchymal involvement on T2-weighted sequences was demonstrated in 19 (54%) of the cohort. CST involvement correlated significantly with the presence of parenchymal damage on T2-weighted imaging (P = 0.02). Among liveborn cases, the rate of motor impairment was 14% (1/7) in children with intact CSTs compared with 100% (5/5) in cases in which the CSTs were impaired (P = 0.015). CONCLUSIONS Fetal corticospinal tractography is feasible technically and offers valuable prognostic information. It enhances parental counseling by providing insights into potential motor outcome, underscoring its utility in complementing fetal neurosonography in cases of prenatal IVH. © 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- E Hadi
- Diagnostic Ultrasound Unit, Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - T Dorittke
- Department of Obstetrics and Gynecology, Division of Obstetrics and Maternal-Fetal Medicine, Medical University of Vienna, Vienna, Austria
| | - P Kienast
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - J Binder
- Department of Obstetrics and Gynecology, Division of Obstetrics and Maternal-Fetal Medicine, Medical University of Vienna, Vienna, Austria
| | - S Glatter
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - A Hershko-Klement
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - T Lerman-Sagie
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Multidisciplinary Fetal Neurology Center, Obstetrics and Gynecology Ultrasound Unit, Obstetrics and Gynecology Department, Wolfson Medical Center, Holon, Israel
| | - D Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - G Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Errante A, Bozzetti F, Piras A, Beccani L, Filippi M, Costi S, Ferrari A, Fogassi L. Lesion mapping and functional characterization of hemiplegic children with different patterns of hand manipulation. Neuroimage Clin 2024; 41:103575. [PMID: 38354671 PMCID: PMC10944177 DOI: 10.1016/j.nicl.2024.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Brain damage in children with unilateral cerebral palsy (UCP) affects motor function, with varying severity, making it difficult the performance of daily actions. Recently, qualitative and semi-quantitative methods have been developed for lesion classification, but studies on mild to moderate hand impairment are lacking. The present study aimed to characterize lesion topography and preserved brain areas in UCP children with specific patterns of hand manipulation. A homogeneous sample of 16 UCP children, aged 9 to 14 years, was enrolled in the study. Motor assessment included the characterization of the specific pattern of hand manipulation, by means of unimanual and bimanual measures (Kinematic Hand Classification, KHC; Manual Ability Classification System, MACS; House Functional Classification System, HFCS; Melbourne Unilateral Upper Limb Assessment, MUUL; Assisting Hand Assessment, AHA). The MRI morphological study included multiple methods: (a) qualitative lesion classification, (b) semi-quantitative classification (sq-MRI), (c) voxel-based morphometry comparing UCP and typically developed children (VBM-DARTEL), and (d) quantitative brain tissue segmentation (q-BTS). In addition, functional MRI was used to assess spared functional activations and cluster lateralization in the ipsilesional and contralesional hemispheres of UCP children during the execution of simple movements and grasping actions with the more affected hand. Lesions most frequently involved the periventricular white matter, corpus callosum, posterior limb of the internal capsule, thalamus, basal ganglia and brainstem. VMB-DARTEL analysis allowed to detect mainly white matter lesions. Both sq-MRI classification and q-BTS identified lesions of thalamus, brainstem, and basal ganglia. In particular, UCP patients with synergic hand pattern showed larger involvement of subcortical structures, as compared to those with semi-functional hand. Furthermore, sparing of gray matter in basal ganglia and thalamus was positively correlated with MUUL and AHA scores. Concerning white matter, q-BTS revealed a larger damage of fronto-striatal connections in patients with synergic hand, as compared to those with semi-functional hand. The volume of these connections was correlated to unimanual function (MUUL score). The fMRI results showed that all patients, but one, including those with cortical lesions, had activation in ipsilesional areas, regardless of lesion timing. Children with synergic hand showed more lateralized activation in the ipsilesional hemisphere both during grasping and simple movements, while children with semi-functional hand exhibited more bilateral activation during grasping. The study demonstrates that lesion localization, rather than lesion type based on the timing of their occurrence, is more associated with the functional level of hand manipulation. Overall, the preservation of subcortical structures and white matter can predict a better functional outcome. Future studies integrating different techniques (structural and functional imaging, TMS) could provide further evidence on the relation between brain reorganization and specific pattern of manipulation in UCP children.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Diagnostics, Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Francesca Bozzetti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Diagnostics, Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Alessandro Piras
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Beccani
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariacristina Filippi
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Costi
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adriano Ferrari
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Knijnenburg ACS, Steinbusch CVM, Janssen-Potten YJM, Defesche A, Vermeulen RJ. Neuro-imaging characteristics of sensory impairment in cerebral palsy; a systematic review. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1084746. [PMID: 37009398 PMCID: PMC10065191 DOI: 10.3389/fresc.2023.1084746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
BackgroundObjective: To identify and examine neural reorganization of the sensory network in terms of lesion type, somatotopic organization of the primary somatosensory area, and functional connectivity in relation to sensory function in children and young adults with cerebral palsy (CP).MethodsDesign: systematic review, Prospero registration ID 342570. Data sources: PubMed; Cochrane; Web of Science; Embase; CINAHL and PEDro from inception to March 13, 2021. Eligibility criteria: All types of original studies, concerning sensory connectivity in relation to sensory outcome in patients with spastic CP, <30 years of age. No publication status or date restrictions were applied. Data extraction and synthesis: Two authors independently determined the eligibility of studies. Quality assessment was performed by a third author. Neuro-imaging/neurophysiological techniques, sensory outcomes and patient characteristics were extracted.ResultsChildren and young adults with periventricular leucomalacia (PVL) lesions have significantly better hand function and sensation scores than patients with cortical-subcortical/middle cerebral artery (MCA) lesions. Ipsilesional reorganization of the S1 (primary somatosensory cortex) area appears to be the primary compensation mechanism after a unilateral early brain lesion, regardless of the timing of the lesion. Interhemispheric reorganization of the sensory system after early brain lesions is rare and, when it occurs, poorly effective. Diffusion tractography shows a positive correlation between the ascending sensory tract (AST) diffusivity metrics of the more affected hemisphere and sensory test outcomes.Discussion and conclusionsBecause of the large variability in study design, patient characteristics, neuroimaging/neurophysiological techniques and parameters as well as sensory assessment methods used, it is difficult to draw definite inferences on the relationship between the reorganization of the sensory network following early brain damage and sensory function in children and young adults with CP. In general, sensory function seems to be worse in cortical as opposed to white matter tract (PVL) lesions. International consensus on a clinically relevant sensory test battery is needed to enhance understanding of the intriguing compensatory mechanisms of sensory network following early brain damage and potential consequences for rehabilitation strategies.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- A. C. S. Knijnenburg
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Correspondence: A. C. S. Knijnenburg
| | - C. V. M. Steinbusch
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
| | - Y. J. M. Janssen-Potten
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
- Research School CAPHRI, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, Netherlands
| | - A. Defesche
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
| | - R. J. Vermeulen
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Bolognese M, Karwacki G, Österreich M, Müller M, Lakatos L. Middle cerebral artery dynamic cerebral autoregulation is impaired by infarctions in the anterior but not the posterior cerebral artery territory in patients with mild strokes. Transl Neurosci 2023; 14:20220278. [PMID: 37021296 PMCID: PMC10068749 DOI: 10.1515/tnsci-2022-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 04/07/2023] Open
Abstract
Objective The aim of this study was to ascertain whether dynamic cerebral autoregulation (CA) in the middle cerebral artery (MCA) is disturbed by cerebral infarctions outside the MCA territory. Methods We estimated transfer function parameters gain and phase from simultaneous recordings of spontaneous oscillation in blood pressure and MCA cerebral blood flow velocity in 10 consecutive patients with isolated anterior cerebral artery (ACA) infarctions and in 22 consecutive patients with isolated posterior cerebral artery (PCA) infarctions. All ACA infarctions were in the motor, premotor, or supplementary motor cortex areas and presented with pronounced leg hemiparesis. Twenty-eight age- and sex-matched healthy subjects served as controls. Results Compared to controls, phase was significantly reduced in the MCA ipsilateral to the lesion site and in the contralateral MCA (unaffected hemisphere) in the very low (0.02-0.07 Hz) and low (0.07-0.15 Hz) frequency ranges in the ACA infarctions but not in the PCA infarctions. Gain was reduced only in the very low frequency range in the MCA contralateral to the ACA lesion site. Systemic factors were unrelated to phase and gain results. Conclusion Bilateral impairment of MCA dynamic CA in patients with a unilateral ACA infarction is frequent.
Collapse
Affiliation(s)
- Manuel Bolognese
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Grzegorz Karwacki
- Section Neuroradiology, Department of Radiology, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Mareike Österreich
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Martin Müller
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Lehel Lakatos
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| |
Collapse
|
5
|
Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11050628. [PMID: 34068265 PMCID: PMC8153104 DOI: 10.3390/brainsci11050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Task-dependent neurophysiological adaptations in people with cerebral palsy have been examined using various techniques such as functional magnetic resonance imaging, peripheral nerve stimulation in order to assess H-reflexes, and transcranial magnetic stimulation. This activity-dependent plasticity is hypothesized to improve specific gross motor function in individuals with cerebral palsy. Although these adaptations have been examined extensively, most studies examined tasks utilizing the upper limbs. The aim of this review is to assess the neurophysiological adaptations of the central nervous system in individuals with cerebral palsy during lower limb functional tasks. Methods: A systematic review and meta-analysis will be conducted to evaluate the neurophysiological changes in the brain and spinal cord associated with lower extremity tasks in individuals with cerebral palsy. We will search within PubMed, MEDLINE, Embase, PsychINFO, and CINAHL using a predetermined search string to identify and evaluate relevant studies. Two independent reviewers will screen these studies against our inclusion criteria and risks of bias, and will extract the data from each study. A third reviewer will be used to resolve any disagreement regarding the inclusion of a study between reviewers. Randomized controlled trials as well as cross-sectional studies published in English 10 years before May 2021 that investigate the neurophysiological adaptations in the brain and spinal cord in people with cerebral palsy will be included if they meet the eligibility criteria. Primary outcomes will include scalar values of fractional anisotropy (FA), H-reflex gains or measures of amplitude, as well as motor cortex (M1) cortical excitability as measured by transcranial magnetic stimulation. Discussion: Since no identifiable data will be involved in this study, no ethical approval is required. Our results will provide insight into the neurophysiological adaptations in children with cerebral palsy, which will be useful in guiding directions for clinical decision making and future development of targeted interventions in pediatrics rehabilitation for children with cerebral palsy. Systematic review registration: The protocol for this systematic review is registered with the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42020215902).
Collapse
|
6
|
Sukal-Moulton T, de Campos AC, Alter KE, Damiano DL. Functional near-infrared spectroscopy to assess sensorimotor cortical activity during hand squeezing and ankle dorsiflexion in individuals with and without bilateral and unilateral cerebral palsy. NEUROPHOTONICS 2020; 7:045001. [PMID: 33062800 PMCID: PMC7536541 DOI: 10.1117/1.nph.7.4.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 05/10/2023]
Abstract
Significance: Our study is the first comparison of brain activation patterns during motor tasks across unilateral cerebral palsy (UCP), bilateral cerebral palsy (BCP), and typical development (TD) to elucidate neural mechanisms and inform rehabilitation strategies. Aim: Cortical activation patterns were compared for distal upper and lower extremity tasks in UCP, BCP, and TD using functional near-infrared spectroscopy (fNIRS) and related to functional severity. Approach: Individuals with UCP ( n = 10 , 18.8 ± 6.8 years ), BCP ( n = 14 , 17.5 ± 9.6 years ), and TD ( n = 16 , 17.3 ± 9.1 years ) participated in this cross-sectional cohort study. The fNIRS was used to noninvasively monitor the hemodynamic response to task-related cortical activation. The block design involved repetitive nondominant hand squeezing and ankle dorsiflexion. Results: Individuals with UCP demonstrated the highest levels of activation for the squeeze task ( UCP > BCP q = 0.049 ; BCP > TD q < 0.001 ; and UCP > TD q = 0.001 ) and more activity in the ipsilateral versus contralateral hemisphere. Individuals with BCP showed the highest levels of cortical activation in the dorsiflexion task ( BCP > UCP q < 0.001 ; BCP > TD ). Conclusions: Grouping by CP subtype and manual function or mobility level demonstrated significant differences from TD, even for individuals with the mildest forms of CP. Hemispheric activation patterns showed hypothesized but nonsignificant trends.
Collapse
Affiliation(s)
- Theresa Sukal-Moulton
- Northwestern University Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Department of Pediatrics, Chicago, Illinois, United States
| | - Ana C. de Campos
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, Brazil
| | - Katharine E. Alter
- National Institutes of Health, Clinical Center, Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Bethesda, Maryland, United States
| | - Diane L. Damiano
- National Institutes of Health, Clinical Center, Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
8
|
Simon-Martinez C, Jaspers E, Alaerts K, Ortibus E, Balsters J, Mailleux L, Blommaert J, Sleurs C, Klingels K, Amant F, Uyttebroeck A, Wenderoth N, Feys H. Influence of the corticospinal tract wiring pattern on sensorimotor functional connectivity and clinical correlates of upper limb function in unilateral cerebral palsy. Sci Rep 2019; 9:8230. [PMID: 31160679 PMCID: PMC6547689 DOI: 10.1038/s41598-019-44728-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
In children with unilateral cerebral palsy (uCP), the corticospinal tract (CST)-wiring patterns may differ (contralateral, ipsilateral or bilateral), partially determining motor deficits. However, the impact of such CST-wiring on functional connectivity remains unknown. Here, we explored resting-state sensorimotor functional connectivity in 26 uCP with periventricular white matter lesions (mean age (standard deviation): 12.87 m (±4.5), CST wiring: 9 contralateral, 9 ipsilateral, 6 bilateral) compared to 60 healthy controls (mean age (standard deviation): 14.54 (±4.8)), and between CST-wiring patterns. Functional connectivity from each M1 to three bilateral sensorimotor regions of interest (primary sensory cortex, dorsal and ventral premotor cortex) and the supplementary motor area was compared between groups (controls vs. uCP; and controls vs. each CST-wiring group). Seed-to-voxel analyses from bilateral M1 were compared between groups. Additionally, relations with upper limb motor deficits were explored. Aberrant sensorimotor functional connectivity seemed to be CST-dependent rather than specific from all the uCP population: in the dominant hemisphere, the contralateral CST group showed increased connectivity between M1 and premotor cortices, whereas the bilateral CST group showed higher connectivity between M1 and somatosensory association areas. These results suggest that functional connectivity of the sensorimotor network is CST-wiring-dependent, although the impact on upper limb function remains unclear.
Collapse
Affiliation(s)
| | - Ellen Jaspers
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Kaat Alaerts
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| | - Els Ortibus
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Joshua Balsters
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH, Zurich, Switzerland.,Department of Psychology, Royal Holloway University of London, Egham, United Kingdom
| | - Lisa Mailleux
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| | | | | | - Katrijn Klingels
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Frédéric Amant
- KU Leuven Department of Oncology, Leuven, Belgium.,Centre for Gynaecologic Oncology, Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Centre for Gynaecologic Oncology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Hilde Feys
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
9
|
Gaberova K, Pacheva I, Timova E, Petkova A, Velkova K, Ivanov I. An Individualized Approach to Neuroplasticity After Early Unilateral Brain Damage. Front Psychiatry 2019; 10:747. [PMID: 31798467 PMCID: PMC6878729 DOI: 10.3389/fpsyt.2019.00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Reorganization after early lesions in the developing brain has been an object of extensive scientific work, but even growing data from translational neuroscience studies in the last 20 years does not provide unified factors for prediction of type of reorganization and rehabilitation potential of patients with unilateral cerebral palsy (UCP) due to pre/perinatal insult. Aim: To analyze the type of motor, language, and sensory brain reorganization in patients with right-sided cerebral palsy due to pre/perinatal isolated left-sided brain lesions taking into consideration the type (cortico-subcortical or periventricular) and extent (gray and white matter damage) of the lesion, etiology, comorbidity, and other postnatal factors that could have played a role in the complex process of brain plasticity. Material and Methods: Eight patients with unilateral right cerebral palsy were included in the study. The individual data from fMRI of primary sensory, motor, and language representation were analyzed and compared with respective comprehensive etiological, clinical, and morphological data. Patients were examined clinically and psychologically, and investigated by structural and functional 3T GE scanner. A correlation between the type and extent of the lesion (involvement of cortical and subcortical structures), timing of lesion, type of reorganization (laterality index), and clinical and psychological outcome was done. Results: Significant interindividual diversity was found in the patient group predominantly in the patterns of motor reorganization. Patients with small periventricular lesions have ipsilesional representation of primary motor, sensory, and word generation function. Patients with lesions involving left cortico-subcortical regions show various models of reorganization in all three modalities (ipsilesional, contralesional, and bilateral) and different clinical outcome that seem to be impossible for prediction. However, patients with UCP who demonstrate ipsilesional motor cortical activation have better motor functional capacity. Conclusion: The type and size of the pre/perinatal lesion in left hemisphere could affect the natural potential of the young brain for reorganization and therefore the clinical outcome. Much larger sample and additional correlation with morphological data (volumetry, morphometry, tractography) is needed for determination of possible risk or protective factors that could play a role in the complex process of brain plasticity.
Collapse
Affiliation(s)
- Katerina Gaberova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Elena Timova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Anelia Petkova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Kichka Velkova
- Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Medical imaging, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
10
|
Miles A. Editorial introduction: The implications of translational neuroscience for clinical practice and its evaluation. J Eval Clin Pract 2018; 24:788-790. [PMID: 30117664 DOI: 10.1111/jep.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022]
|