1
|
Boivin V, Shahriari M, Faure G, Mellul S, Tiassou ED, Jouvet P, Noumeir R. Multimodality Video Acquisition System for the Assessment of Vital Distress in Children. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115293. [PMID: 37300019 DOI: 10.3390/s23115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In children, vital distress events, particularly respiratory, go unrecognized. To develop a standard model for automated assessment of vital distress in children, we aimed to construct a prospective high-quality video database for critically ill children in a pediatric intensive care unit (PICU) setting. The videos were acquired automatically through a secure web application with an application programming interface (API). The purpose of this article is to describe the data acquisition process from each PICU room to the research electronic database. Using an Azure Kinect DK and a Flir Lepton 3.5 LWIR attached to a Jetson Xavier NX board and the network architecture of our PICU, we have implemented an ongoing high-fidelity prospectively collected video database for research, monitoring, and diagnostic purposes. This infrastructure offers the opportunity to develop algorithms (including computational models) to quantify vital distress in order to evaluate vital distress events. More than 290 RGB, thermographic, and point cloud videos of each 30 s have been recorded in the database. Each recording is linked to the patient's numerical phenotype, i.e., the electronic medical health record and high-resolution medical database of our research center. The ultimate goal is to develop and validate algorithms to detect vital distress in real time, both for inpatient care and outpatient management.
Collapse
Affiliation(s)
- Vincent Boivin
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
- Department of Electrical Engineering, Ecole de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| | - Mana Shahriari
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal (UdeM), Montréal, QC H3T 1C5, Canada
| | - Gaspar Faure
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
| | - Simon Mellul
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
| | | | - Philippe Jouvet
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal (UdeM), Montréal, QC H3T 1C5, Canada
| | - Rita Noumeir
- CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
- Department of Electrical Engineering, Ecole de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| |
Collapse
|
2
|
Syed R, Eden R, Makasi T, Chukwudi I, Mamudu A, Kamalpour M, Kapugama Geeganage D, Sadeghianasl S, Leemans SJJ, Goel K, Andrews R, Wynn MT, Ter Hofstede A, Myers T. Digital Health Data Quality Issues: Systematic Review. J Med Internet Res 2023; 25:e42615. [PMID: 37000497 PMCID: PMC10131725 DOI: 10.2196/42615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The promise of digital health is principally dependent on the ability to electronically capture data that can be analyzed to improve decision-making. However, the ability to effectively harness data has proven elusive, largely because of the quality of the data captured. Despite the importance of data quality (DQ), an agreed-upon DQ taxonomy evades literature. When consolidated frameworks are developed, the dimensions are often fragmented, without consideration of the interrelationships among the dimensions or their resultant impact. OBJECTIVE The aim of this study was to develop a consolidated digital health DQ dimension and outcome (DQ-DO) framework to provide insights into 3 research questions: What are the dimensions of digital health DQ? How are the dimensions of digital health DQ related? and What are the impacts of digital health DQ? METHODS Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a developmental systematic literature review was conducted of peer-reviewed literature focusing on digital health DQ in predominately hospital settings. A total of 227 relevant articles were retrieved and inductively analyzed to identify digital health DQ dimensions and outcomes. The inductive analysis was performed through open coding, constant comparison, and card sorting with subject matter experts to identify digital health DQ dimensions and digital health DQ outcomes. Subsequently, a computer-assisted analysis was performed and verified by DQ experts to identify the interrelationships among the DQ dimensions and relationships between DQ dimensions and outcomes. The analysis resulted in the development of the DQ-DO framework. RESULTS The digital health DQ-DO framework consists of 6 dimensions of DQ, namely accessibility, accuracy, completeness, consistency, contextual validity, and currency; interrelationships among the dimensions of digital health DQ, with consistency being the most influential dimension impacting all other digital health DQ dimensions; 5 digital health DQ outcomes, namely clinical, clinician, research-related, business process, and organizational outcomes; and relationships between the digital health DQ dimensions and DQ outcomes, with the consistency and accessibility dimensions impacting all DQ outcomes. CONCLUSIONS The DQ-DO framework developed in this study demonstrates the complexity of digital health DQ and the necessity for reducing digital health DQ issues. The framework further provides health care executives with holistic insights into DQ issues and resultant outcomes, which can help them prioritize which DQ-related problems to tackle first.
Collapse
Affiliation(s)
- Rehan Syed
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Rebekah Eden
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Tendai Makasi
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Ignatius Chukwudi
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Azumah Mamudu
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Mostafa Kamalpour
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Dakshi Kapugama Geeganage
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Sareh Sadeghianasl
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Sander J J Leemans
- Rheinisch-Westfälische Technische Hochschule, Aachen University, Aachen, Germany
| | - Kanika Goel
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Robert Andrews
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Moe Thandar Wynn
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Arthur Ter Hofstede
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Trina Myers
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Recher M, Leteurtre S, Canon V, Baudelet JB, Lockhart M, Hubert H. Severity of illness and organ dysfunction scoring systems in pediatric critical care: The impacts on clinician's practices and the future. Front Pediatr 2022; 10:1054452. [PMID: 36483470 PMCID: PMC9723400 DOI: 10.3389/fped.2022.1054452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Severity and organ dysfunction (OD) scores are increasingly used in pediatric intensive care units (PICU). Therefore, this review aims to provide 1/ an updated state-of-the-art of severity scoring systems and OD scores in pediatric critical care, which explains 2/ the performance measurement tools and the significance of each tool in clinical practice and provides 3/ the usefulness, limits, and impact on future scores in PICU. The following two pediatric systems have been proposed: the PRISMIV, is used to collect data between 2 h before PICU admission and the first 4 h after PICU admission; the PIM3, is used to collect data during the first hour after PICU admission. The PELOD-2 and SOFApediatric scores were the most common OD scores available. Scores used in the PICU should help clinicians answer the following three questions: 1/ Are the most severely ill patients dying in my service: a good discrimination allow us to interpret that there are the most severe patients who died in my service. 2/ Does the overall number of deaths observed in my department consistent with the severity of patients? The standard mortality ratio allow us to determine whether the total number of deaths observed in our service over a given period is in adequacy with the number of deaths predicted, by considering the severity of patients on admission? 3/ Does the number of deaths observed by severity level in my department consistent with the severity of patients? The calibration enabled us to determine whether the number of deaths observed according to the severity of patients at PICU admission in a department over a given period is in adequacy with the number of deaths predicted, according to the severity of the patients at PICU admission. These scoring systems are not interpretable at the patient level. Scoring systems are used to describe patients with PICU in research and evaluate the service's case mix and performance. Therefore, the prospect of automated data collection, which permits their calculation, facilitated by the computerization of services, is a necessity that manufacturers should consider.
Collapse
Affiliation(s)
- Morgan Recher
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.,French National Out-of-Hospital Cardiac Arrest Registry, Lille, France
| | - Stéphane Leteurtre
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.,French National Out-of-Hospital Cardiac Arrest Registry, Lille, France
| | - Valentine Canon
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.,French National Out-of-Hospital Cardiac Arrest Registry, Lille, France
| | - Jean Benoit Baudelet
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - Marguerite Lockhart
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.,French National Out-of-Hospital Cardiac Arrest Registry, Lille, France
| | - Hervé Hubert
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.,French National Out-of-Hospital Cardiac Arrest Registry, Lille, France
| |
Collapse
|