1
|
Mocaer K, Mizzon G, Gunkel M, Halavatyi A, Steyer A, Oorschot V, Schorb M, Le Kieffre C, Yee DP, Chevalier F, Gallet B, Decelle J, Schwab Y, Ronchi P. Targeted volume correlative light and electron microscopy of an environmental marine microorganism. J Cell Sci 2023; 136:jcs261355. [PMID: 37455654 PMCID: PMC10445747 DOI: 10.1242/jcs.261355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Photosynthetic microalgae are responsible for an important fraction of CO2 fixation and O2 production on Earth. Three-dimensional (3D) ultrastructural characterization of these organisms in their natural environment can contribute to a deeper understanding of their cell biology. However, the low throughput of volume electron microscopy (vEM) methods along with the complexity and heterogeneity of environmental samples pose great technical challenges. In the present study, we used a workflow based on a specific electron microscopy sample preparation method compatible with both light and vEM imaging in order to target one cell among a complex natural community. This method revealed the 3D subcellular landscape of a photosynthetic dinoflagellate, which we identified as Ensiculifera tyrrhenica, with quantitative characterization of multiple organelles. We show that this cell contains a single convoluted chloroplast and show the arrangement of the flagellar apparatus with its associated photosensitive elements. Moreover, we observed partial chromatin unfolding, potentially associated with transcription activity in these organisms, in which chromosomes are permanently condensed. Together with providing insights in dinoflagellate biology, this proof-of-principle study illustrates an efficient tool for the targeted ultrastructural analysis of environmental microorganisms in heterogeneous mixes.
Collapse
Affiliation(s)
- Karel Mocaer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, CIID, 69120 Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, 69120 Heidelberg, Germany
| | - Manuel Gunkel
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Anna Steyer
- EMBL Imaging Centre, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Viola Oorschot
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Daniel P. Yee
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38054 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38054 Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Johan Decelle
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38054 Grenoble, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Tillmann U, Wietkamp S, Kretschmann J, Chacón J, Gottschling M. Spatial fragmentation in the distribution of diatom endosymbionts from the taxonomically clarified dinophyte Kryptoperidinium triquetrum (= Kryptoperidinium foliaceum, Peridiniales). Sci Rep 2023; 13:8593. [PMID: 37237053 DOI: 10.1038/s41598-023-32949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/05/2023] [Indexed: 05/28/2023] Open
Abstract
Among the photosynthetically active dinophytes, the Kryptoperidiniaceae are unique in having a diatom as endosymbiont instead of the widely present peridinin chloroplast. Phylogenetically, it is unresolved at present how the endosymbionts are inherited, and the taxonomic identities of two iconic dinophyte names, Kryptoperidinium foliaceum and Kryptoperidinium triquetrum, are also unclear. Multiple strains were newly established from the type locality in the German Baltic Sea off Wismar and inspected using microscopy as well as molecular sequence diagnostics of both host and endosymbiont. All strains were bi-nucleate, shared the same plate formula (i.e., po, X, 4', 2a, 7'', 5c, 7s, 5''', 2'''') and exhibited a narrow and characteristically L-shaped precingular plate 7''. Within the molecular phylogeny of Bacillariaceae, endosymbionts were scattered over the tree in a highly polyphyletic pattern, even if they were gained from different strains of a single species, namely K. triquetrum. Notably, endosymbionts from the Baltic Sea show molecular sequences distinct from the Atlantic and the Mediterranean Sea, which is the first report of such a spatial fragmentation in a planktonic species of dinophytes. The two names K. foliaceum and K. triquetrum are taxonomically clarified by epitypification, with K. triquetrum having priority over its synonym K. foliaceum. Our study underlines the need of stable taxonomy for central questions in evolutionary biology.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27 570, Bremerhaven, Germany
| | - Stephan Wietkamp
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27 570, Bremerhaven, Germany
| | - Juliane Kretschmann
- Department Biologie, Systematics, Biodiversity & Evolution of Plants, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80 638, Munich, Germany
| | - Juliana Chacón
- Department Biologie, Systematics, Biodiversity & Evolution of Plants, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80 638, Munich, Germany
| | - Marc Gottschling
- Department Biologie, Systematics, Biodiversity & Evolution of Plants, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80 638, Munich, Germany.
| |
Collapse
|
3
|
Lim YK, Kim JH, Ro H, Baek SH. Thermotaxic diel vertical migration of the harmful dinoflagellate Cochlodinium (Margalefidinium) polykrikoides: Combined field and laboratory studies. HARMFUL ALGAE 2022; 118:102315. [PMID: 36195428 DOI: 10.1016/j.hal.2022.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The harmful dinoflagellate Cochlodinium polykrikoides, a species that causes mass mortality of farmed fish, uses diel vertical migration (DVM) as an ecological strategy. In summer 2018, a bloom of C. polykrikoides occurred on the southern coast of Korea when the surface water temperature exceeded 29 °C, as a result of a marine heatwave. To understand the effect of high temperature conditions on the DVM of C. polykrikoides, vertical profiles of environmental variables and the occurrence of the dinoflagellate were investigated through a 48 h field survey. In addition, a thermally stratified environment (6-12 °C difference between the surface and bottom layers) was established in a laboratory study to investigate the effect of temperature difference between water layers on the DVM of C. polykrikoides. In the field, most of the C. polykrikoides population was at a depth of 3-6 m during the day, where the water temperature was significantly lower (p < 0.01; Chi square = 57.98; Kruskal-Wallis test) than in the surface layer (0 m), and only the water temperature at 0 m was not correlated with weighted mean depth of C. polykrikoides, suggesting the usage of DVM to avoid high temperature stress. According to our field and laboratory results, there was a trend of greater DVM velocity by thermotaxis when moving from "unfavorable" water temperature (30 °C hot and 12 °C cold) to "favorable" water temperature for growth (optimal 24 °C) of C. polykrikoides. Our findings suggest that thermotaxic DVM is an important ecological strategy used by C. polykrikoides to optimize environmental conditions for growth through vertical positioning and changing migration velocity.
Collapse
Affiliation(s)
- Young Kyun Lim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Ho Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Earth and Marine Science, College of Ocean Sciences, Jeju University, Jeju 63243, Republic of Korea
| | - Hyejoo Ro
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seung Ho Baek
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
5
|
Satta CT, Pulina S, Reñé A, Padedda BM, Caddeo T, Fois N, Lugliè A. Ecological, morphological and molecular characterization of Kryptoperidinium sp. (Dinophyceae) from two Mediterranean coastal shallow lagoons. HARMFUL ALGAE 2020; 97:101855. [PMID: 32732049 DOI: 10.1016/j.hal.2020.101855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, the field ecology of Kryptoperidinium sp. was examined in two Mediterranean shallow lagoons, Calich (CA) and Santa Giusta (SG) in Sardinia, Italy. Kryptoperidinium cell density and the environmental conditions were examined monthly from 2008 to 2015 in CA and from 2011 to 2016 in SG. Cell morphology was determined by observing specimens taken from the field and from cultures that were established by single-cell isolation from samples collected in the two lagoons. The molecular identity of strains from each lagoon was also ascertained. The growth rates of the strains were determined under three different temperature conditions and six salinity treatments. The two wild populations shared the same morphology and the cultured strains were morphologically and molecularly identical. The SSU and 5.8S phylogenies show the presence of two clusters within the available Kryptoperidinium sequences and the strains obtained in this study clustered with others from the Mediterranean and Baltic. The multiannual dynamics of Kryptoperidinium sp. in the field significantly differed in the two lagoons, showing much higher cell densities in CA than in SG. The presence of Kryptoperidinium sp. was detected throughout the year in CA, with recurrent blooms also affecting the adjacent coastal area. In contrast, Kryptoperidinium sp. was sporadically observed in SG. The variation in the environmental parameters was fairly wide during the presence and blooms of Kryptoperidinium sp., especially in CA. The application of Generalized Linear Models to the field data revealed a significant role of rainfall and dissolved inorganic nitrogen on the presence and blooms of the species. Although growth rates were similar between the two strains, significant differences were detected for the 10 and 40 salinity treatments. The results obtained in this study add to our knowledge about the ecology of a harmful species that is not well understood in transitional ecosystems such as Mediterranean lagoons.
Collapse
Affiliation(s)
- Cecilia Teodora Satta
- Agris Sardegna, S.S. 291 Sassari-Fertilia km 18 600, Bonassai (Olmedo), Sardinia, Italy; Dipartimento di Architettura, Università di Sassari, Design e Urbanistica, Via Piandanna 4, Sassari, Sardinia, Italy
| | - Silvia Pulina
- Dipartimento di Architettura, Università di Sassari, Design e Urbanistica, Via Piandanna 4, Sassari, Sardinia, Italy.
| | - Albert Reñé
- Dpt. Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona, Catalonia, Spain
| | - Bachisio Mario Padedda
- Dipartimento di Architettura, Università di Sassari, Design e Urbanistica, Via Piandanna 4, Sassari, Sardinia, Italy
| | - Tiziana Caddeo
- Dipartimento di Architettura, Università di Sassari, Design e Urbanistica, Via Piandanna 4, Sassari, Sardinia, Italy
| | - Nicola Fois
- Agris Sardegna, S.S. 291 Sassari-Fertilia km 18 600, Bonassai (Olmedo), Sardinia, Italy
| | - Antonella Lugliè
- Dipartimento di Architettura, Università di Sassari, Design e Urbanistica, Via Piandanna 4, Sassari, Sardinia, Italy
| |
Collapse
|
6
|
Swafford AJM, Oakley TH. Multimodal sensorimotor system in unicellular zoospores of a fungus. ACTA ACUST UNITED AC 2018; 221:jeb.163196. [PMID: 29170260 DOI: 10.1242/jeb.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022]
Abstract
Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas, which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We found that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either the chemical or the light stimuli presented in this study, not both, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following the gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Abstract
In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in phytoplankton can inform us about the selective forces that drove evolution in the important steps from light detection to vision. We show here that the evolution from simple photoreception to vision seems to have independently followed identical paths and principles in phytoplankton and animals, significantly strengthening our understanding of this important biological process.
Collapse
Affiliation(s)
- Nansi Jo Colley
- *Department of Ophthalmology and Visual Sciences, Department of Genetics, McPherson Eye Research Institute, University of Wisconsin, Madison, 53792 WI, USA
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, University of Lund, Lund, SE-221 00, Sweden
| |
Collapse
|
8
|
Comparing the diel vertical migration of Karlodinium veneficum (dinophyceae) and Chattonella subsalsa (Raphidophyceae): PSII photochemistry, circadian control, and carbon assimilation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:107-19. [PMID: 25618815 DOI: 10.1016/j.jphotobiol.2014.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/06/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Diel vertical migration (DVM) is thought to provide an adaptive advantage to some phytoplankton, and may help determine the ecological niche of certain harmful algae. Here we separately compared DVM patterns between two species of harmful algae isolated from the Delaware Inland Bays, Karlodinium veneficum and Chattonella subsalsa, in laboratory columns. We interpreted the DVM patterns of each species with Photosystem II (PSII) photochemistry, rates of carbon assimilation, and specific growth rates. Each species migrated differently, wherein K. veneficum migrated closer to the surface each day with high population synchrony, while C. subsalsa migrated near to the surface from the first day of measurements with low population synchrony. Both species appeared to downregulate PSII in high light at the surface, but by different mechanisms. C. subsalsa grew slower than K. veneficum in low light intensities (≈bottom of columns), and exhibited maximal rates of C-assimilation (Pmax) at surface light intensities, suggesting this species may prefer high light, potentially explaining this species' rapid surface migration. Contrastingly, K. veneficum showed declines in carbon assimilation at surface light intensities, and exhibited a smaller reduction in growth at low (bottom) light intensities (compared to C. subsalsa), suggesting that this species' step-wise migration was photoacclimative and determined daily migration depth. DVM was found to be under circadian control in C. subsalsa, but not in K. veneficum. However, there was little evidence for circadian regulation of PSII photochemistry in either species. Migration conformed to each species' physiology, and the results contribute to our understanding each alga's realized environmental niche.
Collapse
|
9
|
Scoble JM, Cavalier-Smith T. Scale evolution, sequence phylogeny, and taxonomy of thaumatomonad Cercozoa: 11 new species and new genera Scutellomonas, Cowlomonas, Thaumatospina and Ovaloplaca. Eur J Protistol 2014; 50:270-313. [DOI: 10.1016/j.ejop.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|