1
|
Silva ARST, Costa AMB, Scher R, Andrade-Neto VV, Sarmento VHV, Santos ADJ, Torres-Santos EC, Jain S, Nunes RDS, Menna-Barreto RFS, Dolabella SS. Effect of 3-Carene and the Micellar Formulation on Leishmania (Leishmania) amazonensis. Trop Med Infect Dis 2023; 8:324. [PMID: 37368742 DOI: 10.3390/tropicalmed8060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Leishmaniases are neglected tropical diseases caused by obligate intracellular protozoa of the genus Leishmania. The drugs used in treatment have a high financial cost, a long treatment time, high toxicity, and variable efficacy. 3-Carene (3CR) is a hydrocarbon monoterpene that has shown in vitro activity against some Leishmania species; however, it has low water solubility and high volatility. This study aimed to develop Poloxamer 407 micelles capable of delivering 3CR (P407-3CR) to improve antileishmanial activity. The micelles formulated presented nanometric size, medium or low polydispersity, and Newtonian fluid rheological behavior. 3CR and P407-3CR inhibited the growth of L. (L.) amazonensis promastigote with IC50/48h of 488.1 ± 3.7 and 419.9 ±1.5 mM, respectively. Transmission electron microscopy analysis showed that 3CR induces multiple nuclei and kinetoplast phenotypes and the formation of numerous cytosolic invaginations. Additionally, the micelles were not cytotoxic to L929 cells or murine peritoneal macrophages, presenting activity on intracellular amastigotes. P407-3CR micelles (IC50/72 h = 0.7 ± 0.1 mM) increased the monoterpene activity by at least twice (3CR: IC50/72 h >1.5 mM). These results showed that P407 micelles are an effective nanosystem for delivering 3CR and potentiating antileishmanial activity. More studies are needed to evaluate this system as a potential therapeutic option for leishmaniases.
Collapse
Affiliation(s)
| | | | - Ricardo Scher
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | | | - Adriana de Jesus Santos
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Sona Jain
- Programa de Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Sergipe, Brazil
| | - Rogéria de Souza Nunes
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | | | - Silvio Santana Dolabella
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
2
|
de Castro Levatti EV, Costa-Silva TA, Morais TR, Fernandes JPS, Lago JHG, Tempone AG. Lethal action of Licarin A derivatives in Leishmania (L.) infantum: Imbalance of calcium and bioenergetic metabolism. Biochimie 2022; 208:141-150. [PMID: 36586562 DOI: 10.1016/j.biochi.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Natural metabolites present an extraordinary chemo-diversity and have been used as the inspiration for new drugs. Considering the need for new treatments against the neglected parasitic disease leishmaniasis, three semi-synthetic derivatives of natural neolignane licarin A were prepared: O-acetyl (1a), O-allyl (1b), and 5-allyl (1c). Using an ex vivo assay, compounds 1a, 1b, and 1c showed activity against the intracellular amastigotes of Leishmania (L.) infantum, with IC50 values of 9, 13, and 10 μM, respectively. Despite no induction of hemolytic activity, only compound 1b resulted in mammalian cytotoxicity (CC50 = 64 μM). The most potent compounds (1a and 1c) resulted in selectivity indexes >18. The mechanism of action of compound 1c was evaluated by fluorescent/luminescent based techniques and MALDI-TOF/MS. After a short incubation period, increased levels of the cytosolic calcium were observed in the parasites, with alkalinization of the acidocalcisomes. Compound 1c also induced mitochondrial hyperpolarization, resulting in decreased levels of ATP without altering the reactive oxygen species (ROS). Neither plasma membrane damages nor DNA fragmentation were observed after the treatment, but a reduction in the cellular proliferation was detected. Using MALDI-TOF/MS, mass spectral alterations of promastigote proteins were observed when compared to untreated and miltefosine-treated groups. This chemically modified neolignan induced lethal alterations of the bioenergetic and protein metabolism of Leishmania. Future PKPD and animal efficacy studies are needed to optimize this promising natural-derived compound.
Collapse
Affiliation(s)
| | - Thais A Costa-Silva
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, São Paulo, 09210-580, Brazil
| | - Thiago R Morais
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, São Paulo, 09210-580, Brazil
| | - João Paulo S Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, 09972-270, Brazil
| | - João Henrique G Lago
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, São Paulo, 09210-580, Brazil.
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, 01246-000, Brazil.
| |
Collapse
|
3
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-kobon T. Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania siamensis) and Leishmania martiniquensis Isolate PCM3 from the Southern Province of Thailand. BIOLOGY 2022; 11:biology11040515. [PMID: 35453714 PMCID: PMC9031872 DOI: 10.3390/biology11040515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary This study successfully sequenced the draft genomes of the southern isolates of Leishmania orientalis and Leishmania martiniquensis in Thailand. The comparison with the genomes of the northern isolates revealed species-level similarity with a level of genome and proteome variation, suggesting the different emerging strains. Comparing the proteins of these southern strains to those of the northern ones and 14 other Leishmania species showed six protein groups with numerous unique proteins: 53 for the southern strain PCM2 of L. orientalis and 97 for the strain PCM3 of L. martiniquensis. Some of these proteins were related to virulence, drug resistance, drug target, and stress response, which could be targeted for further experimental characterization. Therefore, the findings could initiate further genetic and population genomic investigation, and the close monitoring of L. orientalis and L. martiniquensis in Thailand and neighboring regions. Abstract (1) Background: Autochthonous leishmaniasis, a sandfly-borne disease caused by the protozoan parasites Leishmania orientalis (formerly named Leishmania siamensis) and Leishmania martiniquensis, has been reported for immunocompromised and immunocompetent patients in the southern province of Thailand. Apart from the recent genomes of the northern isolates, limited information is known on the emergence and genetics of these parasites. (2) Methods: This study sequenced and compared the genomes of L. orientalis isolate PCM2 and L. martiniquensis isolate PCM3 with those of the northern isolates and other 14 Leishmania species using short-read whole-genome sequencing methods and comparative bioinformatic analyses. (3) Results: The genomes of the southern isolates of L. orientalis and L. martiniquensis were 30.01 Mbp and 32.39 Mbp, and the comparison with the genomes of the northern isolates revealed species-level similarity with a level of genome and proteome variation, suggesting the different strains. Comparative proteome analysis showed six protein groups with 53 unique proteins for the strain PCM2 and 97 for the strain PCM3. Certain proteins were related to virulence, drug resistance, and stress response. (4) Conclusion: Therefore, the findings could indicate the need for more genetic and population genomic investigation, and the close monitoring of L. orientalis and L. martiniquensis in Thailand and neighboring regions.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.U.); (K.C.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.U.); (K.C.)
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (S.L.); (M.M.)
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (S.L.); (M.M.)
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-812-85-4672
| |
Collapse
|
4
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Metabolic Depletion of Sphingolipids Does Not Alter Cell Cycle Progression in Chinese Hamster Ovary Cells. J Membr Biol 2021; 255:1-12. [PMID: 34392379 DOI: 10.1007/s00232-021-00198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The cell cycle is a sequential multi-step process essential for growth and proliferation of cells comprising multicellular organisms. Although a number of proteins are known to modulate the cell cycle, the role of lipids in regulation of cell cycle is still emerging. In our previous work, we monitored the role of cholesterol in cell cycle progression in CHO-K1 cells. Since sphingolipids enjoy a functionally synergistic relationship with membrane cholesterol, in this work, we explored whether sphingolipids could modulate the eukaryotic cell cycle using CHO-K1 cells. Sphingolipids are essential components of eukaryotic cell membranes and are involved in a number of important cellular functions. To comprehensively monitor the role of sphingolipids on cell cycle progression, we carried out metabolic depletion of sphingolipids in CHO-K1 cells using inhibitors (fumonisin B1, myriocin, and PDMP) that block specific steps of the sphingolipid biosynthetic pathway and examined their effect on individual cell cycle phases. Our results show that metabolic inhibitors led to significant reduction in specific sphingolipids, yet such inhibition in sphingolipid biosynthesis did not show any effect on cell cycle progression in CHO-K1 cells. We speculate that any role of sphingolipids on cell cycle progression could be context and cell-type dependent, and cancer cells could be a better choice for monitoring such regulation, since sphingolipids are differentially modulated in these cells.
Collapse
|
6
|
Weiss L, Jung KM, Nalbandian A, Llewellyn K, Yu H, Ta L, Chang I, Migliore M, Squire E, Ahmed F, Piomelli D, Kimonis V. Ceramide contributes to pathogenesis and may be targeted for therapy in VCP inclusion body myopathy. Hum Mol Genet 2021; 29:3945-3953. [PMID: 33410456 PMCID: PMC8485215 DOI: 10.1093/hmg/ddaa248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 11/12/2022] Open
Abstract
Knock-in homozygote VCPR155H/R155H mutant mice are a lethal model of valosin-containing protein (VCP)-associated inclusion body myopathy associated with Paget disease of bone, frontotemporal dementia and amyotrophic lateral sclerosis. Ceramide (d18:1/16:0) levels are elevated in skeletal muscle of the mutant mice, compared to wild-type controls. Moreover, exposure to a lipid-enriched diet reverses lethality, improves myopathy and normalizes ceramide levels in these mutant mice, suggesting that dysfunctions in lipid-derived signaling are critical to disease pathogenesis. Here, we investigated the potential role of ceramide in VCP disease using pharmacological agents that manipulate the ceramide levels in myoblast cultures from VCP mutant mice and VCP patients. Myoblasts from wild-type, VCPR155H/+ and VCPR155H/R155H mice, as well as patient-induced pluripotent stem cells (iPSCs), were treated with an inhibitor of ceramide degradation to increase ceramide via acid ceramidase (ARN082) for proof of principle. Three chemically distinct inhibitors of ceramide biosynthesis via serine palmitoyl-CoA transferase (L-cycloserine, myriocin or ARN14494) were used as a therapeutic strategy to reduce ceramide in myoblasts. Acid ceramidase inhibitor, ARN082, elevated cellular ceramide levels and concomitantly enhanced pathology. Conversely, inhibitors of ceramide biosynthesis L-cycloserine, myriocin and ARN14494 reduced ceramide production. The results point to ceramide-mediated signaling as a key contributor to pathogenesis in VCP disease and suggest that manipulating this pathway by blocking ceramide biosynthesis might exert beneficial effects in patients with this condition. The ceramide pathway appears to be critical in VCP pathogenesis, and small-molecule inhibitors of ceramide biosynthesis might provide therapeutic benefits in VCP and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Lan Weiss
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Kwang-Mook Jung
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Angele Nalbandian
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
| | - Katrina Llewellyn
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Howard Yu
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Lac Ta
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Isabela Chang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, 16162, Italy
- Aptuit (Verona) Srl, Verona, 37135 Italy
| | - Erica Squire
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Daniele Piomelli
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
- Pharmaceutical Sciences, University of California-Irvine, Irvine, CA, USA
- Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
- Department of Pathology, University of California-Irvine, Irvine, CA, USA
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Interaction of Trastuzumab with biomembrane models at air-water interfaces mimicking cancer cell surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182992. [DOI: 10.1016/j.bbamem.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
|
8
|
Xu W, Wang H, Lv Z, Shi Y, Wang Z. Antifungal activity and functional components of cell-free supernatant from Bacillus amyloliquefaciens LZN01 inhibit Fusarium oxysporum f. sp. niveum growth. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1637279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Weihui Xu
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, China
| | - Hengxu Wang
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, China
| | - Zhihang Lv
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, China
| | - Yiran Shi
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, China
| | - Zhigang Wang
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, China
| |
Collapse
|
9
|
Trinconi CT, Miguel DC, Silber AM, Brown C, Mina JGM, Denny PW, Heise N, Uliana SRB. Tamoxifen inhibits the biosynthesis of inositolphosphorylceramide in Leishmania. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:475-487. [PMID: 30399513 PMCID: PMC6216108 DOI: 10.1016/j.ijpddr.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 μM (95% CI 7.68–9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites. Tamoxifen alters the sphingolipid metabolism of L. amazonensis. Tamoxifen treated parasites show a significant reduction of IPC and PI species. Tamoxifen-treated parasites present a reduction of inositol transport. Tamoxifen is an inhibitor of L. major's IPC synthase in a micromolar range.
Collapse
Affiliation(s)
- Cristiana T Trinconi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Danilo C Miguel
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Ariel M Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Christopher Brown
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - John G M Mina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Paul W Denny
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
De Castro Levatti EV, Toledo MS, Watanabe Costa R, Bahia D, Mortara RA, Takahashi HK, Straus AH. Leishmania (Viannia) braziliensis Inositol Phosphorylceramide: Distinctive Sphingoid Base Composition. Front Microbiol 2017; 8:1453. [PMID: 28824583 PMCID: PMC5543781 DOI: 10.3389/fmicb.2017.01453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
Inositol phosphorylceramide (IPC), the major sphingolipid in the genus Leishmania but not found in mammals, is considered a potentially useful target for chemotherapy against leishmaniasis. Leishmania (Viannia) braziliensis is endemic in Latin America and causes American tegumentary leishmaniasis. We demonstrated that IPCs are localized internally in parasites, using a specific monoclonal antibody. Treatment with 5 μM myriocin (a serine palmitoyltransferase inhibitor) rendered promastigotes 8-fold less infective than controls in experimental hamster infection, as determined by number of parasites per inguinal lymph node after 8 weeks infection, suggesting the importance of parasite IPC or sphingolipid derivatives in parasite infectivity or survival in the host. IPC was isolated from promastigotes of three L. (V.) braziliensis strains and analyzed by positive- and negative-ion ESI-MS. The major IPC ions were characterized as eicosasphinganine and eicosasphingosine. Negative-ion ESI-MS revealed IPC ion species at m/z 778.6 (d20:1/14:0), 780.6 (d20:0/14:0), 796.6 (t20:0/14:0), 806.6 (d20:1/16:0), and 808.6 (d20:0/16:0). IPCs isolated from L. (V.) braziliensis and L. (L.) major showed significant differences in IPC ceramide composition. The major IPC ion from L. (L.) major, detected in negative-ion ESI-MS at m/z 780.6, was composed of ceramide d16:1/18:0. Our results suggest that sphingosine synthase (also known as serine palmitoyltransferase; SPT) in L. (V.) braziliensis is responsible for synthesis of a long-chain base of 20 carbons (d20), whereas SPT in L. (L.) major synthesizes a 16-carbon long-chain base (d16). A phylogenetic tree based on SPT proteins was constructed by analysis of sequence homologies in species of the Leishmania and Viannia subgenera. Results indicate that SPT gene position in L. (V.) braziliensis is completely separated from that of members of subgenus Leishmania, including L. (L.) major, L. (L.) infantum, and L. (L.) mexicana. Our findings clearly demonstrate sphingoid base differences between L. (V.) braziliensis and members of subgenus Leishmania, and are relevant to future development of more effective targeted anti-leishmaniasis drugs.
Collapse
Affiliation(s)
- Erica V De Castro Levatti
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Marcos S Toledo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Renata Watanabe Costa
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Diana Bahia
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Renato A Mortara
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Helio K Takahashi
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Anita H Straus
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
11
|
Biagiotti M, Dominguez S, Yamout N, Zufferey R. Lipidomics and anti-trypanosomatid chemotherapy. Clin Transl Med 2017; 6:27. [PMID: 28766182 PMCID: PMC5539062 DOI: 10.1186/s40169-017-0160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways. MAIN BODY This review highlights the application of lipidomics (i) in the characterization of the lipidome of kinetoplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving is presented. CONCLUSION Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of drug action and resistance, and pathogen-host interaction of trypanosomatids, which provides a solid basis for the development of better anti-parasitic pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Nader Yamout
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rachel Zufferey
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
12
|
Amoa-Bosompem M, Ohashi M, Mosore MT, Agyapong J, Tung NH, Kwofie KD, Ayertey F, Owusu KBA, Tuffour I, Atchoglo P, Djameh GI, Azerigyik FA, Botchie SK, Anyan WK, Appiah-Opong R, Uto T, Morinaga O, Appiah AA, Ayi I, Shoyama Y, Boakye DA, Ohta N. In vitro anti-Leishmania activity of tetracyclic iridoids from Morinda lucida, benth. Trop Med Health 2016; 44:25. [PMID: 27536194 PMCID: PMC4974772 DOI: 10.1186/s41182-016-0026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/20/2016] [Indexed: 02/03/2023] Open
Abstract
Leishmaniasis is an infectious disease transmitted by the sand fly. It is caused by over 20 different species of Leishmania and has affected over 14 million people worldwide. One of the main forms of control of leishmaniasis is chemotherapy, but this is limited by the high cost and/or toxicity of available drugs. We previously found three novel compounds with an iridoid tetracyclic skeleton to have activity against trypanosome parasites. In this study, we determined the activity of the three anti-trypanosome compounds against Leishmania using field strain, 010, and the lab strain Leishmania hertigi. The minimum inhibitory concentration (MIC) of the compounds against 010 was determined by microscopy while the IC50 of compounds against L. hertigi was determined by fluorescence-activated cell sorting with Guava viacount analysis. We found two of the three compounds, molucidin and ML-F52, to have anti-Leishmania activity against both strains. The fluor-microscope observation with DAPI stain revealed that both Molucidin and ML-F52 induced abnormal parasites with two sets of nucleus and kinetoplast in a cell, suggesting that compounds might inhibit cytokinesis in Leishmania parasites. Molucidin and ML-F52 might be good lead compounds for the development of new anti-Leishmania chemotherapy.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Mitsuko Ohashi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Mba-Tihssommah Mosore
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Jeffrey Agyapong
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Nguyen Huu Tung
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 Japan
| | - Kofi D. Kwofie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Frederick Ayertey
- Centre for Plant Medicine Research, P. O. Box 73, Mampong - Akuapem, Ghana
| | - Kofi Baffuor-Awuah Owusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Isaac Tuffour
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Philip Atchoglo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Georgina I. Djameh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Faustus A. Azerigyik
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Senyo K. Botchie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - William K. Anyan
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Regina Appiah-Opong
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Takuhiro Uto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 Japan
| | - Osamu Morinaga
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 Japan
| | - Alfred. A. Appiah
- Centre for Plant Medicine Research, P. O. Box 73, Mampong - Akuapem, Ghana
| | - Irene Ayi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 Japan
| | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Nobuo Ohta
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
13
|
Pereira CB, de Oliveira DM, Hughes AF, Kohlhoff M, LA Vieira M, Martins Vaz AB, Ferreira MC, Carvalho CR, Rosa LH, Rosa CA, Alves TM, Zani CL, Johann S, Cota BB. Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J Antibiot (Tokyo) 2015; 68:436-44. [PMID: 25712396 DOI: 10.1038/ja.2015.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/16/2014] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
Infections with Cryptococcus are invasive mycoses associated with significant morbidity and mortality, mainly in immunosuppressed patients. Several drugs have been introduced to combat these opportunistic infections. However, resistance of this organism to antifungal drugs has increased, causing difficulties in the treatment. The goal of this work was to evaluate the antifungal activity of ethanol extracts from endophytic fungi isolated from plants collected from different Brazilian ecosystems and to perform the fractionation of the most promising extract. Four-hundred fungal extracts were investigated by microdilution broth assays against Cryptococcus neoformans and Cryptococcus gattii at a concentration of 500 μg ml(-1). Among them, the extract of Mycosphaerella sp. UFMGCB 2032, an endophytic fungus isolated from the plant Eugenia bimarginata DC. (Myrtaceae) exhibited outstanding antifungal activity against C. neoformans and C. gattii, with MIC values of 31.2 μg ml(-1) and 7.8 μg ml(-1), respectively. The fractionation of this extract using liquid-liquid partitioning and semi-preparative HPLC afforded two eicosanoic acids with antifungal activity, compound 1, (2S,3R,4R)-(E)-2-amino-3,4-dihydroxy-2-(hydroxymethyl)-14-oxoeicos-6,12-dienoic acid with MIC values ranging from 1.3-2.50 μg ml(-1), and compound 2, known as myriocin, with MIC values of 0.5 μg ml(-1) against C. neoformans and C. gattii. These compounds are reported for the first time in the Mycosphaerella genus.
Collapse
Affiliation(s)
- Cristiane B Pereira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Djalma M de Oliveira
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Campus Universitário de Jequié, Jequié, Bahia, Brazil
| | - Alice Fs Hughes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Markus Kohlhoff
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Mariana LA Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline B Martins Vaz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana C Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila R Carvalho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tânia Ma Alves
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Carlos L Zani
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Betania B Cota
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| |
Collapse
|