1
|
Rey Redondo E, Xu Y, Yung CCM. Genomic characterisation and ecological distribution of Mantoniella tinhauana: a novel Mamiellophycean green alga from the Western Pacific. Front Microbiol 2024; 15:1358574. [PMID: 38774501 PMCID: PMC11106453 DOI: 10.3389/fmicb.2024.1358574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Mamiellophyceae are dominant marine algae in much of the ocean, the most prevalent genera belonging to the order Mamiellales: Micromonas, Ostreococcus and Bathycoccus, whose genetics and global distributions have been extensively studied. Conversely, the genus Mantoniella, despite its potential ecological importance, remains relatively under-characterised. In this study, we isolated and characterised a novel species of Mamiellophyceae, Mantoniella tinhauana, from subtropical coastal waters in the South China Sea. Morphologically, it resembles other Mantoniella species; however, a comparative analysis of the 18S and ITS2 marker genes revealed its genetic distinctiveness. Furthermore, we sequenced and assembled the first genome of Mantoniella tinhauana, uncovering significant differences from previously studied Mamiellophyceae species. Notably, the genome lacked any detectable outlier chromosomes and exhibited numerous unique orthogroups. We explored gene groups associated with meiosis, scale and flagella formation, shedding light on species divergence, yet further investigation is warranted. To elucidate the biogeography of Mantoniella tinhauana, we conducted a comprehensive analysis using global metagenomic read mapping to the newly sequenced genome. Our findings indicate this species exhibits a cosmopolitan distribution with a low-level prevalence worldwide. Understanding the intricate dynamics between Mamiellophyceae and the environment is crucial for comprehending their impact on the ocean ecosystem and accurately predicting their response to forthcoming environmental changes.
Collapse
Affiliation(s)
| | | | - Charmaine Cheuk Man Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Mao F, Li W, Sim ZY, He Y, Chen Q, Yew-Hoong Gin K. Phycocyanin-rich Synechococcus dominates the blooms in a tropical estuary lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114889. [PMID: 35287073 DOI: 10.1016/j.jenvman.2022.114889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms challenge the safe water supply in estuary reservoirs. Yet, data are limited for the variation of phytoplankton dynamics during an algal bloom event at refined scales, which is essential for interpreting the formation and cessation of blooms. The present study investigated the biweekly abundances and dynamics of pico- and nano-phytoplankton in a tropical estuary lake following a prolonged bloom event. Flow cytometry analysis resolved eight phenotypically distinct groups of phytoplankton assigned to nano-eukaryotes (nano-EU), pico/nano-eukaryotes (PicoNano-EU), cryptophyte-like cells (CRPTO), Microcystis-like cells (MIC), pico-eukaryotes (Pico-EU) and three groups of Synechococcus-like cells. Total phytoplankton abundance ranged widely from 2.4 × 104 to 2.8 × 106 cells cm-3. The phytoplankton community was dominated by Synechococcus-like cells with high phycocyanin content (SYN-PC). Temporal dynamics of the phytoplankton community was phytoplankton- and site-specific. Peak values were observed for SYN-PC, SYN-PE2 (Synechococcus-like cells with low levels of phycoerythrin) and Pico-EU, while the temporal dynamics of other groups were less pronounced. Redundancy analysis (RDA) showed the importance of turbidity as an abiotic factor in the formation of the current SYN-PC induced blooms, and Spearman correlation analysis suggested a competitive relationship between SYN-PC and Pico-EU.
Collapse
Affiliation(s)
- Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Zhi Yang Sim
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Yiliang He
- Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuwen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore.
| |
Collapse
|
3
|
Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, Lauro FM. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci Rep 2019; 9:16390. [PMID: 31704973 PMCID: PMC6841670 DOI: 10.1038/s41598-019-52648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
Collapse
Affiliation(s)
- Caroline Chénard
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Winona Wijaya
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Daniel Vaulot
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Sorbonne Université, CNRS, UMR7144, Ecology of Marine Plankton team, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Adriana Lopes Dos Santos
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Patrick Martin
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Avneet Kaur
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Tragin M, Vaulot D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci Rep 2019; 9:5190. [PMID: 30914730 PMCID: PMC6435750 DOI: 10.1038/s41598-019-41680-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Mamiellophyceae (unicellular green algae) are a key phytoplankton group in coastal waters. Although extensively studied over the last 20 years, the overall oceanic distribution of the major species/clades is still poorly known. To address this problem, we analyzed the 2014 Ocean Sampling Day (OSD) metabarcoding dataset providing sequences from the V4 hypervariable region of the 18S rRNA gene for 157 samples collected at 143 mostly coastal stations. Mamiellophyceae were found at nearly all OSD stations and represented 55% of the green microalgae (Chlorophyta) reads. We performed phylogenetic analyses of unique OSD metabarcodes (amplicon single variants, ASVs) and GenBank reference sequences from cultures and from the environment, focusing on the four most represented genera: Ostreococcus (45% of the Mamiellophyceae reads), Micromonas (34%), Bathycoccus (10%) and Mantoniella (8.7%). These analyses uncovered novel diversity within each genus except Bathycoccus. In Ostreococcus, a new clade (E) was the second most represented clade after Ostreococcus "lucimarinus". Micromonas could be separated into nine clades, exceeding the six species and candidate species already described. Finally, we found two new environmental clades within Mantoniella. Each Mamiellophyceae clade had a specific distribution in the OSD dataset suggesting that they are adapted to different ecological niches.
Collapse
Affiliation(s)
- Margot Tragin
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France.
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Tragin M, Vaulot D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci Rep 2018; 8:14020. [PMID: 30232358 PMCID: PMC6145878 DOI: 10.1038/s41598-018-32338-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
The ecology and distribution of green phytoplankton (Chlorophyta) in the ocean is poorly known because most studies have focused on groups with large cell size such as diatoms or dinoflagellates that are easily recognized by traditional techniques such as microscopy. The Ocean Sampling Day (OSD) project sampled surface waters quasi-simultaneously at 141 marine locations, mostly in coastal waters. The analysis of the 18S V4 region OSD metabarcoding dataset reveals that Chlorophyta are ubiquitous and can be locally dominant in coastal waters. Chlorophyta represented 29% of the global photosynthetic reads (Dinoflagellates excluded) and their contribution was especially high at oligotrophic stations (up to 94%) and along the European Atlantic coast. Mamiellophyceae dominated most coastal stations. At some coastal stations, they were replaced by Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae or Chlorophyceae as the dominating group, while oligotrophic stations were dominated either by Chloropicophyceae or the uncultured prasinophytes clade IX. Several Chlorophyta classes showed preferences in terms of nitrate concentration, distance to the coast, temperature and salinity. For example, Chlorophyceae preferred cold and low salinity coastal waters, and prasinophytes clade IX warm, high salinity, oligotrophic oceanic waters.
Collapse
Affiliation(s)
- Margot Tragin
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|