1
|
Boscaro V, James ER, Fiorito R, Del Campo J, Scheffrahn RH, Keeling PJ. Updated classification of the phylum Parabasalia. J Eukaryot Microbiol 2024; 71:e13035. [PMID: 38825738 DOI: 10.1111/jeu.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
The phylum Parabasalia includes very diverse single-cell organisms that nevertheless share a distinctive set of morphological traits. Most are harmless or beneficial gut symbionts of animals, but some have turned into parasites in other body compartments, the most notorious example being Trichomonas vaginalis in humans. Parabasalians have garnered attention for their nutritional symbioses with termites, their modified anaerobic mitochondria (hydrogenosomes), their character evolution, and the wholly unique features of some species. The molecular revolution confirmed the monophyly of Parabasalia, but considerably changed our view of their internal relationships, prompting a comprehensive reclassification 14 years ago. This classification has remained authoritative for many subgroups despite a greatly expanded pool of available data, but the large number of species and sequences that have since come out allow for taxonomic refinements in certain lineages, which we undertake here. We aimed to introduce as little disruption as possible but at the same time ensure that most taxa are truly monophyletic, and that the larger clades are subdivided into meaningful units. In doing so, we also highlighted correlations between the phylogeny of parabasalians and that of their hosts.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erick R James
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Fiorito
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. Biol Rev Camb Philos Soc 2024; 99:622-652. [PMID: 38105542 DOI: 10.1111/brv.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Noda S, Kitade O, Jasso-Selles DE, Taerum SJ, Takayanagi M, Radek R, Lo N, Ohkuma M, Gile GH. Molecular phylogeny of Spirotrichonymphea (Parabasalia) with emphasis on Spironympha, Spirotrichonympha, and three new genera Pseudospironympha, Nanospironympha, and Brugerollina. J Eukaryot Microbiol 2023; 70:e12967. [PMID: 36760170 DOI: 10.1111/jeu.12967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an "immature" life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the "true" Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the "true" Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.
Collapse
Affiliation(s)
- Satoko Noda
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan.,Graduate School of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Osamu Kitade
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | | | - Stephen J Taerum
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Miki Takayanagi
- Graduate School of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Renate Radek
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Radek R, Platt K, Öztas D, Šobotník J, Sillam-Dussès D, Hanus R, Brune A. New insights into the coevolutionary history of termites and their gut flagellates: Description of Retractinympha glossotermitis gen. nov. sp. nov. (Retractinymphidae fam. nov.). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lower termites harbor diverse consortia of symbiotic gut flagellates. Despite numerous evidence for co-cladogenesis, the evolutionary history of these associations remains unclear. Here, we present Retractinymphidae fam. nov., a monogeneric lineage of Trichonymphida from Serritermitidae. Although Retractinympha glossotermitis gen. nov. sp. nov. morphologically resembles members of the genus Pseudotrichonympha, phylogenetic analysis identified it as sister group of the Teranymphidae. We compared morphology and ultrastructure of R. glossotermitis to that of Pseudotrichonympha and other Teranymphidae, including the so-far undescribed Pseudotrichonympha solitaria sp. nov. from Termitogeton planus (Rhinotermitidae). Like all Teranymphidae, R. glossotermitis is a large, elongated flagellate with a bilaterally symmetric rostrum, an anterior, flagella-free operculum, and an internal rostral tube. However, it is readily distinguished by the length of its rostral flagella, which never exceeds that of the postrostral flagella, and its retractable anterior end. Inclusion of the hitherto unstudied Stylotermes halumicus (Stylotermitidae) in our survey of trichonymphid flagellates in Neoisoptera confirmed that the combined presence of Heliconympha and Retractinympha and absence of Pseudotrichonympha is unique to Serritermitidae. The close phylogenetic relatedness of Heliconympha in Serritermitidae to the spirotrichosomid flagellates in Stolotermitidae provides strong support for their acquisition by horizontal transmission.
Collapse
|
5
|
Gile GH, Taerum SJ, Jasso-Selles DE, Sillam-Dussès D, Ohkuma M, Kitade O, Noda S. Molecular Phylogenetic Position of Microjoenia (Parabasalia: Spirotrichonymphea) from Reticulitermes and Hodotermopsis Termite Hosts. Protist 2021; 172:125836. [PMID: 34757297 DOI: 10.1016/j.protis.2021.125836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Microjoenia are obligate symbionts of termites. The genus was erected in 1892 for small cells with many flagella that insert near, but not directly from, the cell apex, and an axostyle that can protrude from the cell posterior. Although ultrastructural studies have been carried out on three Microjoenia species to date, no molecular data have been directly attributed to any species. Microjoenia are classified within the parabasalian class Spirotrichonymphea, which is characterized by flagellar bands that emerge near the cell apex and proceed posteriorly in a right-handed helix. In Microjoenia, however, the flagellar bands are very short and proceed longitudinally or with a weakly observable helix. In this study, we have amplified and sequenced the 18S ribosomal RNA gene from individually isolated Microjoenia cells from Reticulitermes and Hodotermopsis hosts as part of an ongoing effort to understand the phylogeny of Spirotrichonymphea and their coevolution with termites. In our 18S rRNA gene phylogeny, Microjoenia forms the sister lineage to Spirotrichonympha, though many other evolutionary relationships within Spirotrichonymphea remain unresolved.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA.
| | - Stephen J Taerum
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Daniel E Jasso-Selles
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology (LEEC) UR4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Osamu Kitade
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Satoko Noda
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
6
|
Song YQ, Zhang D, Chen W, Dang XX, Yang H. Phylogenetic identification of symbiotic protists of five Chinese Reticulitermes species indicates a cospeciation of gut microfauna with host termites. J Eukaryot Microbiol 2021; 68:e12862. [PMID: 34120379 DOI: 10.1111/jeu.12862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Symbiotic protists play important roles in the wood digestion of lower termites. Previous studies showed that termites generally possess host-specific flagellate communities. The genus Reticulitermes is particularly interesting because its unique assemblage of gut flagellates bears evidence for transfaunation. The gut fauna of Reticulitermes species in Japan, Europe, and North America had been investigated, but data on species in China are scarce. For the first time, we analyzed the phylogeny of protists in the hindgut of five Reticulitermes species in China. A total of 22 protist phylotypes were affiliated with the family Trichonymphidae, Teranymphidae, Trichomonadidae, and Holomastigotoididae (Phylum Parabasalia), and 45 protist phylotypes were affiliated with the family Pyrsonymphidae (Phylum Preaxostyla). The protist fauna of these five Reticulitermes species is similar to those of Reticulitermes species in other geographical regions. The topology of Trichonymphidae subtree was similar to that of Reticulitermes tree. All Preaxostyla clones were affiliated with the genera Pyrsonympha and Dinenympha (Order Oxymonadida) as in the other Reticulitermes species. The results of this study not only add to the existing information on the flagellates present in other Reticulitermes species but also offer the opportunity to test the hypotheses for the coevolution of symbiotic protists with their host termites.
Collapse
Affiliation(s)
- Yan-Qiu Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Institute of Entomology, Central China Normal University, Wuhan, China.,School of Public Health, Dali University, Dali, China
| | - Dian Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Institute of Entomology, Central China Normal University, Wuhan, China
| | - Wen Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Institute of Entomology, Central China Normal University, Wuhan, China
| | - Xiao-Xue Dang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Institute of Entomology, Central China Normal University, Wuhan, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Institute of Entomology, Central China Normal University, Wuhan, China
| |
Collapse
|
7
|
De Martini F, Coots NL, Jasso-Selles DE, Shevat J, Ravenscraft A, Stiblík P, Šobotník J, Sillam-Dussès D, Scheffrahn RH, Carrijo TF, Gile GH. Biogeography and Independent Diversification in the Protist Symbiont Community of Heterotermes tenuis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic microbiome of “lower” termites is highly stable and host-specific. This is due to the mutually obligate nature of the symbiosis and the direct inheritance of protists by proctodeal trophallaxis. However, vertical transmission is occasionally imperfect, resulting in daughter colonies that lack one or more of the expected protist species. This phenomenon could conceivably lead to regional differences in protist community composition within a host species. Here, we have characterized the protist symbiont community of Heterotermes tenuis (Hagen) (Blattodea: Rhinotermitidae) from samples spanning South and Central America. Using light microscopy, single cell isolation, and amplicon sequencing, we report eight species-level protist phylotypes belonging to four genera in the phylum Parabasalia. The diversity and distribution of each phylotype’s 18S rRNA amplicon sequence variants (ASVs) mostly did not correlate with geographical or host genetic distances according to Mantel tests, consistent with the lack of correlation we observed between host genetic and geographical distances. However, the ASV distances of Holomastigotoides Ht3 were significantly correlated with geography while those of Holomastigotoides Ht1 were significantly correlated with host phylogeny. These results suggest mechanisms by which termite-associated protist species may diversify independently of each other and of their hosts, shedding light on the coevolutionary dynamics of this important symbiosis.
Collapse
|
8
|
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 2021; 78:2749-2769. [PMID: 33388854 PMCID: PMC11071720 DOI: 10.1007/s00018-020-03728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Institute of Food and Agricultural Science, Ft Lauderdale Research and Education Center, University of Florida, Davie, FL, USA.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, University of Kansas, 1501 Crestline Drive, Suite 140, Lawrence, KS, 66045, USA
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| |
Collapse
|
9
|
|
10
|
Jasso-Selles DE, De Martini F, Velenovsky JF, Mee ED, Montoya SJ, Hileman JT, Garcia MD, Su NY, Chouvenc T, Gile GH. The Complete Protist Symbiont Communities of Coptotermes formosanus and Coptotermes gestroi: Morphological and Molecular Characterization of Five New Species. J Eukaryot Microbiol 2020; 67:626-641. [PMID: 32603489 DOI: 10.1111/jeu.12815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. The C. formosanus hindgut has long been considered to harbor three protist species, Pseudotrichonympha grassii (Trichonymphida), Holomastigotoides hartmanni, and Cononympha (Spirotrichonympha) leidyi (Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, the C. gestroi community remains undescribed except for Pseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single-cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of one Pseudotrichonympha species, two Holomastigotoides species, and two Cononympha species. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research in C. formosanus and C. gestroi hybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor.
Collapse
Affiliation(s)
- Daniel E Jasso-Selles
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Joseph F Velenovsky
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Evan D Mee
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Samantha J Montoya
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Jonathon T Hileman
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Mikaela D Garcia
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| | - Nan-Yao Su
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Thomas Chouvenc
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, 85487, USA
| |
Collapse
|
11
|
Michaud C, Hervé V, Dupont S, Dubreuil G, Bézier AM, Meunier J, Brune A, Dedeine F. Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a wood‐feeding termite. Mol Ecol 2019; 29:308-324. [DOI: 10.1111/mec.15322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Caroline Michaud
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis Max Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Annie M. Bézier
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis Max Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| |
Collapse
|
12
|
Novel Lineages of Oxymonad Flagellates from the Termite Porotermes adamsoni (Stolotermitidae): the Genera Oxynympha and Termitimonas. Protist 2019; 170:125683. [DOI: 10.1016/j.protis.2019.125683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022]
|
13
|
Waidele L, Korb J, Voolstra CR, Dedeine F, Staubach F. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim Microbiome 2019; 1:13. [PMID: 33499940 PMCID: PMC7807685 DOI: 10.1186/s42523-019-0014-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Elucidating the interplay between hosts and their microbiomes in ecological adaptation has become a central theme in evolutionary biology. A textbook example of microbiome-mediated adaptation is the adaptation of lower termites to a wood-based diet, as they depend on their gut microbiome to digest wood. Lower termites have further adapted to different life types. Termites of the wood-dwelling life type never leave their nests and feed on a uniform diet. Termites of the foraging life type forage for food outside the nest and have access to other nutrients. Here we sought to investigate whether the microbiome that is involved in food substrate breakdown and nutrient acquisition might contribute to adaptation to these dietary differences. We reasoned that this should leave ecological imprints on the microbiome. Results We investigated the protist and bacterial microbiomes of a total of 29 replicate colonies from five termite species, covering both life types, using metagenomic shotgun sequencing. The microbiome of wood-dwelling species with a uniform wood diet was enriched for genes involved in lignocellulose degradation. Furthermore, metagenomic patterns suggest that the microbiome of wood-dwelling species relied primarily on direct fixation of atmospheric nitrogen, while the microbiome of foraging species entailed the necessary pathways to utilize nitrogen in the form of nitrate for example from soil. Conclusion Our findings are consistent with the notion that the microbiome of wood-dwelling species bears an imprint of its specialization on degrading a uniform wood diet, while the microbiome of the foraging species might reflect its adaption to access growth limiting nutrients from more diverse sources. This supports the idea that specific subsets of functions encoded by the microbiome can contribute to host adaptation.
Collapse
Affiliation(s)
- Lena Waidele
- Biologie I, University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany
| | - Judith Korb
- Biologie I, University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany
| | | | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, 37200, Tours, France
| | - Fabian Staubach
- Biologie I, University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Mee ED, Gaylor MG, Jasso‐Selles DE, Mizumoto N, Gile GH. Molecular Phylogenetic Position of
Hoplonympha natator
(Trichonymphea, Parabasalia): Horizontal Symbiont Transfer or Differential Loss? J Eukaryot Microbiol 2019; 67:268-272. [DOI: 10.1111/jeu.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Evan D. Mee
- School of Life Sciences Arizona State University 427 E Tyler MallTempe Arizona 85287
| | - Maya G. Gaylor
- School of Life Sciences Arizona State University 427 E Tyler MallTempe Arizona 85287
| | | | - Nobuaki Mizumoto
- School of Life Sciences Arizona State University 427 E Tyler MallTempe Arizona 85287
| | - Gillian H. Gile
- School of Life Sciences Arizona State University 427 E Tyler MallTempe Arizona 85287
| |
Collapse
|
15
|
Taerum SJ, Jasso‐Selles DE, Wilson M, Ware JL, Sillam‐Dussès D, Šobotník J, Gile GH. Molecular Identity of
Holomastigotes
(Spirotrichonymphea, Parabasalia) with Descriptions of
Holomastigotes flavipes
n. sp. and
Holomastigotes tibialis
n. sp. J Eukaryot Microbiol 2019; 66:882-891. [DOI: 10.1111/jeu.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/22/2019] [Accepted: 04/18/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen J. Taerum
- School of Life Sciences Arizona State University 427 E Tyler Mall 85287 Tempe Arizona
| | | | - Megan Wilson
- Department of Biological Sciences Rutgers‐Newark University Boyden Hall, 195 University Ave 07102 Newark New Jersey
| | - Jessica L. Ware
- Department of Biological Sciences Rutgers‐Newark University Boyden Hall, 195 University Ave 07102 Newark New Jersey
| | - David Sillam‐Dussès
- Laboratory of Experimental and Comparative Ethology (LEEC) University of Paris 13 Sorbonne Paris Cité, 99 avenue Jean‐Baptiste Clément 93430 Villetaneuse France
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcká 129 165 21 Prague 6 Czech Republic
| | - Gillian H. Gile
- School of Life Sciences Arizona State University 427 E Tyler Mall 85287 Tempe Arizona
| |
Collapse
|
16
|
Grieco MB, Lopes FAC, Oliveira LS, Tschoeke DA, Popov CC, Thompson CC, Gonçalves LC, Constantino R, Martins OB, Kruger RH, de Souza W, Thompson FL. Metagenomic Analysis of the Whole Gut Microbiota in Brazilian Termitidae Termites Cornitermes cumulans, Cyrilliotermes strictinasus, Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus, Grigiotermes bequaerti, and Orthognathotermes mirim. Curr Microbiol 2019; 76:687-697. [DOI: 10.1007/s00284-019-01662-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
|
17
|
Waidele L, Korb J, Voolstra CR, Künzel S, Dedeine F, Staubach F. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species. Front Microbiol 2017; 8:2518. [PMID: 29312218 PMCID: PMC5742190 DOI: 10.3389/fmicb.2017.02518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/04/2017] [Indexed: 01/21/2023] Open
Abstract
The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet) in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.
Collapse
Affiliation(s)
- Lena Waidele
- Evolutionary Biology and Animal Ecology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Judith Korb
- Evolutionary Biology and Animal Ecology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Christian R Voolstra
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, Centre National de la Recherche Scientifique - Université de Tours, Tours, France
| | - Fabian Staubach
- Evolutionary Biology and Animal Ecology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Nalepa CA. What Kills the Hindgut Flagellates of Lower Termites during the Host Molting Cycle? Microorganisms 2017; 5:E82. [PMID: 29258251 PMCID: PMC5748591 DOI: 10.3390/microorganisms5040082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Subsocial wood feeding cockroaches in the genus Cryptocercus, the sister group of termites, retain their symbiotic gut flagellates during the host molting cycle, but in lower termites, closely related flagellates die prior to host ecdysis. Although the prevalent view is that termite flagellates die because of conditions of starvation and desiccation in the gut during the host molting cycle, the work of L.R. Cleveland in the 1930s through the 1960s provides a strong alternate hypothesis: it was the changed hormonal environment associated with the origin of eusociality and its concomitant shift in termite developmental ontogeny that instigates the death of the flagellates in termites. Although the research on termite gut microbial communities has exploded since the advent of modern molecular techniques, the role of the host hormonal environment on the life cycle of its gut flagellates has been neglected. Here Cleveland's studies are revisited to provide a basis for re-examination of the problem, and the results framed in the context of two alternate hypotheses: the flagellate symbionts are victims of the change in host social status, or the flagellates have become incorporated into the life cycle of the eusocial termite colony. Recent work on parasitic protists suggests clear paths for exploring these hypotheses and for resolving long standing issues regarding sexual-encystment cycles in flagellates of the Cryptocercus-termite lineage using molecular methodologies, bringing the problem into the modern era.
Collapse
Affiliation(s)
- Christine A Nalepa
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
19
|
Brune A. Ectosymbiotic Endomicrobia - a transition stage towards intracellular symbionts? ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:474-476. [PMID: 28892291 DOI: 10.1111/1758-2229.12587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Andreas Brune
- Insect Gut Microbiology and Symbiosis Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|