1
|
Dumack K, Lara E, Duckert C, Ermolaeva E, Siemensma F, Singer D, Krashevska V, Lamentowicz M, Mitchell EAD. It's time to consider the Arcellinida shell as a weapon. Eur J Protistol 2024; 92:126051. [PMID: 38194835 DOI: 10.1016/j.ejop.2024.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism. Based on recent evidence, we propose that the shell of arcellinid testate amoebae is a crucial component facilitating the amoebae's attack of large prey. Accordingly, the shell is not purely protective, but must be considered also as a weapon. This change in perspective opens up numerous new avenues in protistology and will lead to a substantial change in ecological, palaeoecological, and evolutionary research.
Collapse
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology, Zülpicher Straße 47b, University of Cologne, Germany.
| | - Enrique Lara
- Real Jardín Botánico-CSIC, C. Moyano 1 28014, Madrid, Spain
| | - Clément Duckert
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| | - Elizaveta Ermolaeva
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| | | | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Valentyna Krashevska
- Senckenberg Biodiversity and Climate Research Centre, Functional Environmental Genomics, Senckenberganlage 25 60325, Frankfurt, Germany
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences Adam Mickiewicz University in Poznan, Bogumiła Krygowskiego 10 61-680, Poznan, Poland
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Wang K, Xu HH, Liu BC, Bai J, Wang Y, Tang P, Lu JF, Wang Y. Shallow-marine testate amoebae with internal structures from the Lower Devonian of China. iScience 2023; 26:106678. [PMID: 37182111 PMCID: PMC10173733 DOI: 10.1016/j.isci.2023.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Testate amoebae, a polyphyletic protist group inhabiting a wide variety of extant ecosystems, have evolved as far back as early Neoproterozoic. However, their fossil record is discontinuous and biased toward empty shells. Here, we report an arcellinid testate amoeba species, Cangwuella ampulliformis gen. nov., sp. nov., from a shallow-marine community in the Early Devonian of Guangxi, southwestern China. With the aid of scanning electron microscopy and X-ray micro-tomography, we find that the shell of our testate amoeba contains some acetabuliform structures. Although such configuration does not match exactly with the known internal structures in extant testate amoebae, our fossils highlight the potential of exploring the ecological relationships between fossil testate amoebae and their associated organisms, and increase our knowledge on the diversity of testate amoebae in Early Devonian environments.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-He Xu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- Corresponding author
| | - Bing-Cai Liu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Bai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Peng Tang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jian-Feng Lu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Dumack K, Gerdzhikov D, Klisarova D. Phylogenetic analysis confirms the taxonomic placement of the marine flagellate Hermesinum adriaticum (Thecofilosea, Cercozoa, Rhizaria). J Eukaryot Microbiol 2022; 69:e12905. [PMID: 35303760 DOI: 10.1111/jeu.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hermesinum adriaticum is a rare marine and brackish flagellate that is of considerable interest due to its markable and fossilizable siliceous skeleton. Based on this skeleton, Hermesinum was initially considered a microalga of the Dictyochophyceae (Ochrophyta, Stramenopiles). Later on, it was assigned to the Ebriida due to its similarity to Ebria tripartita. The taxonomic assignment of the Ebriida however changed several times until it was placed within the Thecofilosea (Cercozoa, Rhizaria), based on genetic data of Ebria tripartita. We sequenced the 18S marker gene sequence of Hermesinum and confirm the close relationship of Ebria and Hermesinum.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674, Köln, Germany
| | - Dimitar Gerdzhikov
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria
| | - Daniela Klisarova
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria.,Medical University, Department of Anatomy, Histology, Cytology and Biology, Pleven, 5800, Bulgaria
| |
Collapse
|
4
|
Dumack K, Siemensma F, Clauß S. Transfer of the thecate amoebae Lecythium spinosum and Pamphagus armatus to Rhizaspis (Thecofilosea, Cercozoa, Rhizaria). Eur J Protistol 2021; 83:125843. [PMID: 34920934 DOI: 10.1016/j.ejop.2021.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022]
Abstract
Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. The captivating spine-bearing taxa in Thecofilosea were not yet molecularly characterized due to being very rare. There are only two known spine-bearing species, Pamphagus armatus and Lecythium spinosum, which were synonymized by Penard in 1902. Due to a morphological difference of those taxa, we discuss here that we disagree with this taxonomical act. We further isolated single cells of Pamphagus armatus directly from their habitat and successfully sequenced their SSU rDNA, which we subjected to phylogenetic analyses. We show that Pamphagus armatus branches within the Rhizaspididae (Tectofilosida, Thecofilosea). Accordingly, we transfer Pamphagus armatus and the assumingly closely related species Lecythium spinosum to Rhizaspis.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
5
|
Dumack K, Duckert C, Meinhardt R, Lara E, Bonkowski M. Description of Phaeobola aeris gen. nov., sp. nov (Rhizaria, Cercozoa, Euglyphida) Sheds Light on Euglyphida's Dark Matter. J Eukaryot Microbiol 2020; 68:e12835. [PMID: 33222324 DOI: 10.1111/jeu.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022]
Abstract
The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.
Collapse
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| | - Clément Duckert
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, CH-2000, Switzerland
| | - Raphaela Meinhardt
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| | - Enrique Lara
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid, 28014, Spain
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| |
Collapse
|
6
|
Öztoprak H, Walden S, Heger T, Bonkowski M, Dumack K. What Drives the Diversity of the Most Abundant Terrestrial Cercozoan Family (Rhogostomidae, Cercozoa, Rhizaria)? Microorganisms 2020; 8:E1123. [PMID: 32722603 PMCID: PMC7463998 DOI: 10.3390/microorganisms8081123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
Environmental sequencing surveys of soils and freshwaters revealed high abundance and diversity of the Rhogostomidae, a group of omnivorous thecate amoebae. This is puzzling since only a few Rhogostomidae species have yet been described and only a handful of reports mention them in field surveys. We investigated the putative cryptic diversity of the Rhogostomidae by a critical re-evaluation of published environmental sequencing data and in-depth ecological and morphological trait analyses. The Rhogostomidae exhibit an amazing diversity of genetically distinct clades that occur in a variety of different environments. We further broadly sampled for Rhogostomidae species; based on these isolates, we describe eleven new species and highlight important morphological traits for species delimitation. The most important environmental drivers that shape the Rhogostomidae community were soil moisture, soil pH, and total plant biomass. The length/width ratio of the theca was a morphological trait related to the colonized habitats, but not the shape and size of the aperture that is often linked to moisture adaption in testate and thecate amoebae.
Collapse
Affiliation(s)
- Hüsna Öztoprak
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Susanne Walden
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Thierry Heger
- Soil Science and Environment Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland;
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| |
Collapse
|
7
|
Lara E, Dumack K, García-Martín JM, Kudryavtsev A, Kosakyan A. Amoeboid protist systematics: A report on the "Systematics of amoeboid protists" symposium at the VIIIth ECOP/ISOP meeting in Rome, 2019. Eur J Protistol 2020; 76:125727. [PMID: 32755801 DOI: 10.1016/j.ejop.2020.125727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Amoeboid protists are extremely abundant and diverse in natural systems where they often play outstanding ecological roles. They can be found in almost all major eukaryotic divisions, and genomic approaches are bringing major changes in our perception of their deep evolutionary relationships. At fine taxonomic levels, the generalization of barcoding is revealing a considerable and unsuspected specific diversity that can be appreciated with careful morphometric analyses based on light and electron microscopic observations. We provide examples on the difficulties and advances in amoeboid protists systematics in a selection of groups that were presented at the VIIIth ECOP/ISOP meeting in Rome, 2019. We conclude that, in all studied groups, important taxonomical rearrangements will certainly take place in the next few years, and systematics must be adapted to incorporate these changes. Notably, nomenclature should be flexible enough to integrate many new high level taxa, and a unified policy must be adopted to species description and to the establishment of types.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | | | - Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint-Petersburg, Russia; Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint-Petersburg, Russia
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Shiratori T, Yabuki A, Ishida KI. Morphology, Ultrastructure, and Phylogeny of Two Novel Species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp., Thecofilosea, Cercozoa). Protist 2020; 171:125731. [PMID: 32464531 DOI: 10.1016/j.protis.2020.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/05/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ventrifissura is a group of poorly studied heterotrophic biflagellates in the phylum Cercozoa. Despite a phylogenetic placement with only weak support and a lack of ultrastructural data, Ventrifissura was assigned to Thecofilosea. In the presented study, we established cultures of two novel species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp.) isolated from coastal marine environments in Japan, and performed light and electron microscopy observations and molecular phylogenetic analysis. Transmission electron microscopy revealed that V. oblonga shares several ultrastructural characteristics with thecofilosean flagellates, including permanently condensed chromosomes, a extracellular theca, and slender extrusomes. Molecular phylogenetic analysis could not resolve the phylogenetic position, but the possibility that Ventrifissura clusters into Ventrifilosa was supported by approximately unbiased tests. Based on both morphological and phylogenetic findings, we concluded that Ventrifissura is a basal lineage of Thecofilosea.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
9
|
Dumack K, Siemensma F. Shell Colour in Cercozoa; a Simple Trait to Distinguish Thecofilosea from Imbricatea? Protist 2020; 171:125718. [DOI: 10.1016/j.protis.2020.125718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/29/2023]
|
10
|
Siemensma F, Dumack K. SSU rDNA Phylogeny Indicates the Scale-lacking Trivalvulariida ord. nov. as a Sister Group to the Euglyphida (Cercozoa, Rhizaria). Protist 2020; 171:125701. [DOI: 10.1016/j.protis.2019.125701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
11
|
Dumack K, Fiore‐Donno AM, Bass D, Bonkowski M. Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour 2019; 20:398-403. [DOI: 10.1111/1755-0998.13112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Kenneth Dumack
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - Anna Maria Fiore‐Donno
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - David Bass
- Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth UK
- Department of Life Sciences The Natural History Museum London UK
| | - Michael Bonkowski
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| |
Collapse
|
12
|
Ntakou E, Siemensma F, Bonkowski M, Dumack K. The Dancing Star: Reinvestigation of Artodiscus saltans (Variosea, Amoebozoa) Penard 1890. Protist 2019; 170:349-357. [PMID: 31295666 DOI: 10.1016/j.protis.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023]
Abstract
Artodiscus saltans, first described by Penard (1890), has a unique morphology. Without genetic data it could not yet been reliably placed into a wider taxonomical context. We present morphological data for A. saltans from different aquatic habitats of four European countries. We subjected three cells of one strain from Germany to molecular analyses and, interestingly, obtained six different rDNA sequences. Phylogenetic analyses of these SSU rDNA sequences revealed that A. saltans branches close to the amoebozoan Multicilia marina (Variosea, Amoebozoa).
Collapse
Affiliation(s)
- Efthymia Ntakou
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany
| | | | - Michael Bonkowski
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany.
| |
Collapse
|
13
|
Dumack K, Pundt J, Bonkowski M. Food Choice Experiments Indicate Selective Fungivorous Predation in
Fisculla terrestris
(Thecofilosea, Cercozoa). J Eukaryot Microbiol 2018; 66:525-527. [DOI: 10.1111/jeu.12680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Köln Germany
- Department of Zoology Institute of Biosciences University of São Paulo Rua do Matão tv. 14, 101 05508‐090 São Paulo Brazil
| | - Julia Pundt
- Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Köln Germany
| | - Michael Bonkowski
- Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Köln Germany
| |
Collapse
|
14
|
Bass D, Tikhonenkov DV, Foster R, Dyal P, Janouškovec J, Keeling PJ, Gardner M, Neuhauser S, Hartikainen H, Mylnikov AP, Berney C. Rhizarian 'Novel Clade 10' Revealed as Abundant and Diverse Planktonic and Terrestrial Flagellates, including Aquavolon n. gen. J Eukaryot Microbiol 2018; 65:828-842. [PMID: 29658156 PMCID: PMC6282753 DOI: 10.1111/jeu.12524] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
Rhizarian ‘Novel Clade 10’ (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage‐specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier‐branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized ‘Novel Clade 12’, which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria.
Collapse
Affiliation(s)
- David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK
| | - Denis Victorovich Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia.,Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Rachel Foster
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Patricia Dyal
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jan Janouškovec
- Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Michelle Gardner
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, 6020, Austria
| | - Hanna Hartikainen
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Alexandre P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia
| | - Cédric Berney
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|