1
|
Li H, Wu K, Feng Y, Gao C, Wang Y, Zhang Y, Pan J, Shen X, Zufall RA, Zhang Y, Zhang W, Sun J, Ye Z, Li W, Lynch M, Long H. Integrative analyses on the ciliates Colpoda illuminate the life history evolution of soil microorganisms. mSystems 2024; 9:e0137923. [PMID: 38819204 PMCID: PMC11237667 DOI: 10.1128/msystems.01379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 06/01/2024] Open
Abstract
Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species-Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome for C. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events in C. steinii, which may account for its genome being about twice the size of C. inflata's, another co-existing species. We further resolve the gene expression profiles in diverse life stages of C. steinii, which are also corroborated in C. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpoda species, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature of Colpoda's life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Kun Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuan Feng
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Chao Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Weipeng Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jin Sun
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Liu Y, Niu J, Ye F, Solberg T, Lu B, Wang C, Nowacki M, Gao S. Dynamic DNA N 6-adenine methylation (6mA) governs the encystment process, showcased in the unicellular eukaryote Pseudocohnilembus persalinus. Genome Res 2024; 34:256-271. [PMID: 38471739 PMCID: PMC10984389 DOI: 10.1101/gr.278796.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
The formation of resting cysts commonly found in unicellular eukaryotes is a complex and highly regulated survival strategy against environmental stress that involves drastic physiological and biochemical changes. Although most studies have focused on the morphology and structure of cysts, little is known about the molecular mechanisms that control this process. Recent studies indicate that DNA N 6-adenine methylation (6mA) could be dynamically changing in response to external stimuli; however, its potential role in the regulation of cyst formation remains unknown. We used the ciliate Pseudocohnilembus persalinus, which can be easily induced to form cysts to investigate the dynamic pattern of 6mA in trophonts and cysts. Single-molecule real-time (SMRT) sequencing reveals high levels of 6mA in trophonts that decrease in cysts, along with a conversion of symmetric 6mA to asymmetric 6mA. Further analysis shows that 6mA, a mark of active transcription, is involved in altering the expression of encystment-related genes through changes in 6mA levels and 6mA symmetric-to-asymmetric conversion. Most importantly, we show that reducing 6mA levels by knocking down the DNA 6mA methyltransferase PpAMT1 accelerates cyst formation. Taken together, we characterize the genome-wide 6mA landscape in P. persalinus and provide insights into the role of 6mA in gene regulation under environmental stress in eukaryotes. We propose that 6mA acts as a mark of active transcription to regulate the encystment process along with symmetric-to-asymmetric conversion, providing important information for understanding the molecular response to environmental cues from the perspective of 6mA modification.
Collapse
Affiliation(s)
- Yongqiang Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Junhua Niu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fei Ye
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Therese Solberg
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Department of Molecular Biology, Keio University School of Medicine, 160-8582 Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, 108-8345 Tokyo, Japan
| | - Borong Lu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chundi Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Shan Gao
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Xu J, Shen Z, Yu M, Sheng Y, Yi Z. Novel insights into molecular mechanisms of vegetative cell cycle and resting cyst formation in Apodileptus cf. visscheri (Alveolata, Ciliophora). J Eukaryot Microbiol 2023; 70:e12958. [PMID: 36458427 DOI: 10.1111/jeu.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Ciliates usually with big cell sizes, complex morphological structures, and diverse life cycles, are good model organisms for studying cell proliferation regulation of eukaryotes. Up to date, the molecular regulation mechanisms for the vegetative cell cycle and encystment of these ciliates are poorly understood. Here, transcriptomes of Apodileptus cf. visscheri, which has an asexual vegetative cell cycle and is apt to encyst when environmental conditions become unfavorable, were sequenced to enrich our related knowledge. In this study, three replicates were sequenced for each of four cell stages, including initial period of growth, morphogenesis, cell division, and resting cyst. The significant transcription differences, involving cell cycle, biosynthesis, and energy metabolism pathways, were revealed between the resting cyst and vegetative cell cycle. Further investigations showed that the cell cycle pathway was enriched during morphogenesis stage and cell division stage. Compared to the initial period of growth stage, the differentially expressed genes involved in cellular components and molecular function were significantly enriched during cell division stage, while cellular components and biological processes were significantly enriched during morphogenesis stage. These provide novel insights into a comprehensive understanding at the molecular level of the survival and adaptive mechanism of unicellular eukaryotes.
Collapse
Affiliation(s)
- Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Zhuo Shen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, Guangdong, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Yalan Sheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Li Y, Wang Y, Zhang S, Maurer-Alcalá XX, Yan Y. How Ciliated Protists Survive by Cysts: Some Key Points During Encystment and Excystment. Front Microbiol 2022; 13:785502. [PMID: 35250922 PMCID: PMC8891572 DOI: 10.3389/fmicb.2022.785502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Forming cysts is a common and important bionomic strategy for microorganisms to persist in harsh environments. In ciliated protists, many species have been reported to form cysts when facing unfavorable conditions. Despite traditional studies on the morphological features of cysts and the chemical composition of cyst wall, recent research has focused more on the molecular mechanisms of encystment. The present work reviews studies on developmental features and molecular information of resting cysts in ciliates, and pays more attention to the following questions: what are the inducing factors of encystment and excystment? How does the cell change morphologically during these dynamic processes? And what molecular mechanisms underlie those changes? We also present and summarize the characteristics of cysts from diverse ciliate lineages in a phylogenetic framework, aiming to provide new perspectives for studies on adaptive evolution of unicellular eukaryotes.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yurui Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shijing Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xyrus X. Maurer-Alcalá
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Ying Yan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Shimada Y, Hasegawa Y, Harada Y, Nakamura R, Matsuoka T, Arikawa M. Signaling in temperature-induced resting cyst formation in the ciliated protozoan Colpoda cucullus. Eur J Protistol 2021; 79:125800. [PMID: 34049128 DOI: 10.1016/j.ejop.2021.125800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
The terrestrial ciliated protozoan Colpoda cucullus inhabits soil. When the habitat conditions become unfavorable, the vegetative cells of C. cucullus quickly transform into resting cysts. C. cucullus culture is established in our laboratory, and encystment is routinely induced by the addition of Ca2+ to overpopulated vegetative cells. However, an increase in Ca2+ concentration and overpopulation of vegetative cells do not always occur in natural. We investigated the effect of temperature and found that cyst formation was induced by a rapid increase of 5 °C within 2 min but not by a decrease. Moreover, an increase in intracellular Ca2+ concentrations is essential, but Ca2+ inflow does not necessarily occur during encystment. Ca2+ image analysis showed that Ca2+ is stored in vesicular structures and released into the cytoplasm within 60 s after temperature stimulation. Multiple signaling pathways are activated after the release of Ca2+ from vesicles, and cAMP is a candidate second messenger with a crucial role in the process of temperature-induced encystment. Further studies are needed to clarify the mechanism underlying the sensing of temperature and release of Ca2+ from vesicles.
Collapse
Affiliation(s)
- Yuto Shimada
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Yuya Hasegawa
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Yuya Harada
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Rikiya Nakamura
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Tatsuomi Matsuoka
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Kochi, Japan.
| |
Collapse
|
6
|
Pan N, Bhatti MZ, Zhang W, Ni B, Fan X, Chen J. Transcriptome analysis reveals the encystment-related lncRNA expression profile and coexpressed mRNAs in Pseudourostyla cristata. Sci Rep 2021; 11:8274. [PMID: 33859278 PMCID: PMC8050308 DOI: 10.1038/s41598-021-87680-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
Ciliated protozoans form dormant cysts for survival under adverse conditions. The molecular mechanisms regulating this process are critical for understanding how single-celled eukaryotes adapt to the environment. Despite the accumulated data on morphology and gene coding sequences, the molecular mechanism by which lncRNAs regulate ciliate encystment remains unknown. Here, we first detected and analyzed the lncRNA expression profile and coexpressed mRNAs in dormant cysts versus vegetative cells in the hypotrich ciliate Pseudourostyla cristata by high-throughput sequencing and qRT-PCR. A total of 853 differentially expressed lncRNAs were identified. Compared to vegetative cells, 439 and 414 lncRNAs were upregulated and downregulated, respectively, while 47 lncRNAs were specifically expressed in dormant cysts. A lncRNA-mRNA coexpression network was constructed, and the possible roles of lncRNAs were screened. Three of the identified lncRNAs, DN12058, DN20924 and DN30855, were found to play roles in fostering encystment via their coexpressed mRNAs. These lncRNAs can regulate a variety of physiological activities that are essential for encystment, including autophagy, protein degradation, the intracellular calcium concentration, microtubule-associated dynein and microtubule interactions, and cell proliferation inhibition. These findings provide the first insight into the potentially functional lncRNAs and their coexpressed mRNAs involved in the dormancy of ciliated protozoa and contribute new evidence for understanding the molecular mechanisms regulating encystment.
Collapse
Affiliation(s)
- Nan Pan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Matsuoka T. Early signaling pathways mediating dormant cyst formation in terrestrial unicellular eukaryote Colpoda. FEMS Microbiol Lett 2021; 368:6156630. [PMID: 33677557 DOI: 10.1093/femsle/fnab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Dormant (resting) cyst formation (encystment) in unicellular eukaryotes is the process of a large-scale digestion of vegetative cell structures and reconstruction into the dormant form, which is performed by cell signaling pathways accompanied by up- or down-regulation of protein expression, and by posttranslational modification such as phosphorylation. In this review, the author describes the morphogenetic events during encystment of Colpoda and the early molecular events in the Ca2+/calmodulin-triggered signaling pathways for encystment, based mainly on our research results of the past 10 years; especially, the author discusses the role of c-AMP dependently phosphorylated proteins (ribosomal P0 protein, ribosomal S5 protein, Rieske iron-sulfur protein, actin and histone H4) and encystment-dependently upregulated (EF-1α-HSP60, actin-related protein) and downregulated proteins (ATP synthase β-chain). In addition, the roles of AMPK, a key molecule in the signaling pathways leading to Colpoda encystment, and differentially expressed genes and proteins during encystment of other ciliates are discussed.
Collapse
Affiliation(s)
- Tatsuomi Matsuoka
- Department of Biological Science, Faculty of Science and Technology, Kochi University, Akebono-cho 2-5-1, Kochi, Japan
| |
Collapse
|
8
|
Sogame Y, Kojima K, Takeshita T, Kikuchi S, Shimada Y, Nakamura R, Arikawa M, Miyata S, Kinoshita E, Suizu F, Matsuoka T. Analysis of Water-Soluble Proteins by Two-Dimensional Electrophoresis in the Encystment Process of Colpoda cucullus Nag-1 and Cytoskeletal Dynamics. ACTA PROTOZOOL 2021. [DOI: 10.4467/16890027ap.20.009.13264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assays of protein contained in water-soluble fraction of encysting cells Colpoda cucullus Nag-1 by two-dimensional electrophoresis (2-D PAGE) and mass spectrometry (MS) revealed that the amount of β-tubulin abruptly increased in 2.5–10 h after encystment induction. Judging from the results that total α-tubulin content did not decrease much until 12 h after encystment induction, the result indicates that disassembly of microtubules may occur soon after encystment is induced. Therefore, we tried to visualize dynamics of microtubules. Immunofluorescence microscopy using anti-α-tubulin antibody indicated that disassembly of axonemal microtubules of cilia became within 1.5 h after encystment induction, and resorbed in 3 days. Although the cytoplasmic microtubules failed to be visualized clearly, encystmentdependent globulation of cells was promoted by taxol, an inhibitor of disassembly of microtubules. It is possible that a temporary formation of cytoplasmic microtubules may be involved in cell globulation.
The phosphorylation level of actin (43 kDa) became slightly elevated just after encystment induction. Lepidosomes, the sticky small globes surrounding encysting cells, were vividly stained with Acti-stain 555 phalloidin, suggesting that 43-kDa actin or its homologues may be contained in lepidosomes.
Collapse
Affiliation(s)
- Yoichiro Sogame
- National Institute of Technology Fukushima College, Iwaki, Fukushima Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiho Kikuchi
- Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
| | - Yuto Shimada
- Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
| | - Rikiya Nakamura
- Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
| | - Mikihiko Arikawa
- Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuomi Matsuoka
- Department of Biological Science, Faculty of Science, Kochi University, Kochi, Japan
| |
Collapse
|
9
|
Pan N, Bhatti MZ, Zhang H, Ni B, Fan X, Chen J. The Encystment-Related MicroRNAs and Its Regulation Molecular Mechanism in Pseudourostyla cristata Revealed by High Throughput Small RNA Sequencing. Int J Mol Sci 2020; 21:ijms21072309. [PMID: 32225121 PMCID: PMC7177753 DOI: 10.3390/ijms21072309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of target genes in diverse cellular processes and play important roles in different physiological processes. However, little is known about the microRNAome (miRNAome) during encystment of ciliated protozoa. In the current study, we first investigated the differentially expressed miRNAs and relative signaling pathways participating in the transformation of vegetative cells into dormant cysts of Pseudourostyla cristata (P. cristata). A total of 1608 known miRNAs were found in the two libraries. There were 165 miRNAs with 1217 target miRNAs. The total number of differential miRNAs screened between vegetative cells and dormant cysts databases were 449 with p < 0.05 and |log2 fold changes| > 1. Among them, the upregulated and downregulated miRNAs were 243 and 206, respectively. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that some of the differentially expressed miRNAs were mainly associated with oxidative phosphorylation, two-component system, and biosynthesis of amino acids. Combining with our bioinformatics analyzes, some differentially expressed miRNAs including miR-143, miR-23b-3p, miR-28, and miR-744-5p participates in the encystment of P. cristata. Based on these findings, we propose a hypothetical signaling network of miRNAs regulating or promoting P. cristata encystment. This study shed new lights on the regulatory mechanisms of miRNAs in encystment of ciliated protozoa.
Collapse
Affiliation(s)
- Nan Pan
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
| | - Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (M.Z.B.); (H.Z.)
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Haiyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (M.Z.B.); (H.Z.)
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
- Correspondence: ;
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
- Correspondence: ;
| |
Collapse
|
10
|
Novel insights into molecular mechanisms of Pseudourostyla cristata encystment using comparative transcriptomics. Sci Rep 2019; 9:19109. [PMID: 31836801 PMCID: PMC6911008 DOI: 10.1038/s41598-019-55608-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
The encystment of many ciliates is an advanced survival strategy against adversity and the most important reason for ciliates existence worldwide. However, the molecular mechanism for the encystment of free-living ciliates is poorly understood. Here, we performed comparative transcriptomic analysis of dormant cysts and trophonts from Pseudourostyla cristata using transcriptomics, qRT-PCR and bioinformatic techniques. We identified 2565 differentially expressed unigenes between the dormant cysts and the trophonts. The total number of differentially expressed genes in GO database was 1752. The differential unigenes noted to the GO terms were 1993. These differential categories were mainly related to polyamine transport, pectin decomposition, cytoplasmic translation, ribosome, respiratory chain, ribosome structure, ion channel activity, and RNA ligation. A total of 224 different pathways were mapped. Among them, 184 pathways were upregulated, while 162 were downregulated. Further investigation showed that the calcium and AMPK signaling pathway had important induction effects on the encystment. In addition, FOXO and ubiquitin-mediated proteolysis signaling pathway jointly regulated the encystment. Based on these findings, we propose a hypothetical signaling network that regulates Pseudourostyla cristata encystment. Overall, these results provide deeper insights into the molecular mechanisms of ciliates encystment and adaptation to adverse environments.
Collapse
|