1
|
Berlinches de Gea A, Geisen S, Grootjans F, Wilschut RA, Schwelm A. Species-specific predation determines the feeding impacts of six soil protist species on bacterial and eukaryotic prey. Eur J Protistol 2024; 94:126090. [PMID: 38795654 DOI: 10.1016/j.ejop.2024.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Predatory protists play a central role in nutrient cycling and are involved in other ecosystem functions by predating the microbiome. While most soil predatory protist species arguably are bacterivorous, some protist species can prey on eukaryotes. However, studies about soil protist feeding mainly focused on bacteria as prey and rarely tested both bacteria and eukaryotes as potential prey. In this study, we aimed to decipher soil predator-prey interactions of three amoebozoan and three heterolobosean soil protists and potential bacterial (Escherichia coli; 0.5-1.5 µm), fungal (Saccharomyces cerevisiae; 5-7 µm) and protist (Plasmodiophora brassicae; 3-5 µm) prey, either as individual prey or in all their combinations. We related protist performance (relative abundance) and prey consumption (qPCR) to the protist phylogenetic group and volume. We showed that for the six soil protist predators, the most suitable prey was E. coli, but some species also grew on P. brassicae or S. cerevisiae. While protist relative abundances and growth rates depended on prey type in a protist species-specific manner, phylogenetic groups and volume affected prey consumption. Yet we conclude that protist feeding patterns are mainly species-specific and that some known bacterivores might be more generalist than expected, even preying on eukaryotic plant pathogens such as P. brassicae.
Collapse
Affiliation(s)
- Alejandro Berlinches de Gea
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Franka Grootjans
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; TEAGASC - The Agriculture and Food Development Authority Department of Crops, Environment & Land Use, Wexford, Ireland.
| |
Collapse
|
2
|
Li Z, Wang J, Fan J, Yue H, Zhang X. Marine toxin domoic acid alters protistan community structure and assembly process in sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106131. [PMID: 37579703 DOI: 10.1016/j.marenvres.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Domoic acid (DA)-producing algal blooms have been the issue of worldwide concerns in recent decades, but there has never been any attempt to investigate the effects of DA on microbial ecology in marine environments. Protists are considered to be key regulators of microbial activity, community structure and evolution, we therefore explore the effect of DA on the ecology of protists via metagenome in this work. The results indicate that trace amounts of DA can act as a stressor to alter alpha and beta diversity of protistan community. Among trophic functional groups, consumers and phototrophs are negative responders of DA, implying DA is potentially capable of functional-level effects in the ocean. Moreover, microecological theory reveals that induction of DA increases the role of deterministic processes in microbial community assembly, thus altering the biotic relationships and successional processes in symbiotic patterns. Finally, we demonstrate that the mechanism by which DA shapes protistan ecological network is by acting on phototrophs, which triggers cascading effects in networks and eventually leading to shifts in ecological succession of protists. Overall, our results present the first perspective regarding the effects of DA on marine microbial ecology, which will supplement timely information on the ecological impacts of DA in the ocean.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xiuhong Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
3
|
Galachyants Y, Zakharova Y, Bashenkhaeva M, Petrova D, Kopyrina L, Likhoshway Y. Microeukaryotic Communities of the Long-Term Ice-Covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia. DIVERSITY 2023. [DOI: 10.3390/d15030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Currently, microeukaryotic communities of the freshwater arctic and subarctic ecosystems are poorly studied. Still, these are of considerable interest due to the species biogeography and autecology as well as global climate change. Here, we used high-throughput 18S rRNA amplicon sequencing to study the microeukaryotic communities of the large subarctic freshwater lakes Labynkyr and Vorota in Yakutia, Russia, during the end of the ice cover period, from April to June. By applying the statistical methods, we coupled the microeukaryotic community structure profiles with available discrete factor variables and hydrophysical, hydrochemical, and environmental parameters. The sub-ice layer and the water column communities were differentiated due to the temporal change in environmental conditions, particularly temperature regime and electric conductivity. Additionally, the community composition of unicellular eukaryotes in lakes Labynkyr and Vorota was changing due to seasonal environmental factors, with these alterations having similar patterns in both sites. We suggest the community developed in the sub-ice layer in April serves as a primer for summer freshwater microeukaryotes. Our results extend the current knowledge on the community composition and seasonal succession of unicellular eukaryotes within subarctic freshwater ecosystems.
Collapse
|
4
|
Roy J, Mazel F, Dumack K, Bonkowski M, Rillig MC. Hierarchical phylogenetic community assembly of soil protists in a temperate agricultural field. Environ Microbiol 2022; 24:5498-5508. [PMID: 35837871 DOI: 10.1111/1462-2920.16134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Abstract
Protists are abundant, diverse and perform essential functions in soils. Protistan community structure and its change across time or space are traditionally studied at the species-level but the relative importance of the processes shaping these patterns depends on the taxon phylogenetic resolution. Using 18S rDNA amplicon data of the Cercozoa, a group of dominant soil protists, from an agricultural field in western Germany, we observed a turnover of relatively closely related taxa (from sequence variants to genus-level clades) across soil depth; while across soil habitats (rhizosphere, bulk soil, drilosphere) we observed turnover of relatively distantly related taxa, confirming Paracercomonadidae as a rhizosphere-associated clade. We extended our approach to show that closely related Cercozoa encounter divergent AM fungi across soil depth and that distantly related Cercozoa encounter closely related AM fungi across soil compartments. This study suggests that soil Cercozoa community assembly at the field-scale is driven by niche-based processes shaped by evolutionary legacy of adaptation to conditions primarily related to soil compartment, followed by soil layer, giving a deeper understanding on the selection pressures that shaped their evolution.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Kennet Dumack
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Michael Bonkowski
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthias C Rillig
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
5
|
Dumack K, Gerdzhikov D, Klisarova D. Phylogenetic analysis confirms the taxonomic placement of the marine flagellate Hermesinum adriaticum (Thecofilosea, Cercozoa, Rhizaria). J Eukaryot Microbiol 2022; 69:e12905. [PMID: 35303760 DOI: 10.1111/jeu.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hermesinum adriaticum is a rare marine and brackish flagellate that is of considerable interest due to its markable and fossilizable siliceous skeleton. Based on this skeleton, Hermesinum was initially considered a microalga of the Dictyochophyceae (Ochrophyta, Stramenopiles). Later on, it was assigned to the Ebriida due to its similarity to Ebria tripartita. The taxonomic assignment of the Ebriida however changed several times until it was placed within the Thecofilosea (Cercozoa, Rhizaria), based on genetic data of Ebria tripartita. We sequenced the 18S marker gene sequence of Hermesinum and confirm the close relationship of Ebria and Hermesinum.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674, Köln, Germany
| | - Dimitar Gerdzhikov
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria
| | - Daniela Klisarova
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria.,Medical University, Department of Anatomy, Histology, Cytology and Biology, Pleven, 5800, Bulgaria
| |
Collapse
|
6
|
Brasell KA, Pochon X, Howarth J, Pearman JK, Zaiko A, Thompson L, Vandergoes MJ, Simon KS, Wood SA. Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cores are often refrigerated (4 °C) for weeks or months before subsampling. We investigated the impact of storage time on changes in DNA (purified or as cell lysate) concentrations and shifts in biological communities following storage of lake surface sediment at 4 °C for up to 24 weeks. Sediment samples (~ 0.22 g, in triplicate per time point) were spiked with purified DNA (100 or 200 ng) or lysate from a brackish water cyanobacterium that produces the cyanotoxin nodularin or non-spiked. Samples were analysed every 1–4 weeks over a 24-week period. Droplet digital PCR showed no significant decrease in the target gene (nodularin synthetase – subunit F; ndaF) over the 24-week period for samples spiked with purified DNA, while copy number decreased by more than half in cell lysate-spiked samples. There was significant change over time in bacteria and eukaryotic community composition assessed using metabarcoding. Amongst bacteria, the cyanobacterial signal became negligible after 5 weeks while Proteobacteria increased. In the eukaryotic community, Cercozoa became dominant after 6 weeks. These data demonstrate that DNA yields and community composition data shift significantly when sediments are stored chilled for more than 5 weeks. This highlights the need for rapid subsampling and appropriate storage of sediment core samples for paleogenomic studies.
Collapse
|
7
|
Dumack K, Ferlian O, Morselli Gysi D, Degrune F, Jauss RT, Walden S, Öztoprak H, Wubet T, Bonkowski M, Eisenhauer N. Contrasting protist communities (Cercozoa: Rhizaria) in pristine and earthworm-invaded North American deciduous forests. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractEarthworms are considered ecosystem engineers due to their fundamental impact on soil structure, soil processes and on other soil biota. An invasion of non-native earthworm species has altered soils of North America since European settlement, a process currently expanding into still earthworm-free forest ecosystems due to continuous spread and increasing soil temperatures owing to climate change. Although earthworms are known to modify soil microbial diversity and activity, it is as yet unclear how eukaryote consumers in soil microbial food webs will be affected. Here, we investigated how earthworm invasion affects the diversity of Cercozoa, one of the most dominant protist taxa in soils. Although the composition of the native cercozoan community clearly shifted in response to earthworm invasion, the communities of the different forests showed distinct responses. We identified 39 operational taxonomic units (OTUs) exclusively indicating earthworm invasion, hinting at an earthworm-associated community of Cercozoa. In particular, Woronina pythii, a hyper-parasite of plant-parasitic Oomycota in American forests, increased strongly in the presence of invasive earthworms, indicating an influence of invasive earthworms on oomycete communities and potentially on forest health, which requires further research.
Collapse
|
8
|
Dumack K, Siemensma F, Clauß S. Transfer of the thecate amoebae Lecythium spinosum and Pamphagus armatus to Rhizaspis (Thecofilosea, Cercozoa, Rhizaria). Eur J Protistol 2021; 83:125843. [PMID: 34920934 DOI: 10.1016/j.ejop.2021.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022]
Abstract
Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. The captivating spine-bearing taxa in Thecofilosea were not yet molecularly characterized due to being very rare. There are only two known spine-bearing species, Pamphagus armatus and Lecythium spinosum, which were synonymized by Penard in 1902. Due to a morphological difference of those taxa, we discuss here that we disagree with this taxonomical act. We further isolated single cells of Pamphagus armatus directly from their habitat and successfully sequenced their SSU rDNA, which we subjected to phylogenetic analyses. We show that Pamphagus armatus branches within the Rhizaspididae (Tectofilosida, Thecofilosea). Accordingly, we transfer Pamphagus armatus and the assumingly closely related species Lecythium spinosum to Rhizaspis.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
9
|
Khanipour Roshan S, Dumack K, Bonkowski M, Leinweber P, Karsten U, Glaser K. Taxonomic and Functional Diversity of Heterotrophic Protists (Cercozoa and Endomyxa) from Biological Soil Crusts. Microorganisms 2021; 9:205. [PMID: 33498223 PMCID: PMC7908994 DOI: 10.3390/microorganisms9020205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Biological soil crusts (biocrusts) accommodate diverse communities of phototrophic and heterotrophic microorganisms. Heterotrophic protists have critical roles in the microbial food webs of soils, with Cercozoa and Endomyxa often being dominant groups. Still, the diversity, community composition, and functions of Cercozoa and Endomyxa in biocrusts have been little explored. In this study, using a high-throughput sequencing method with taxon-specific barcoded primers, we studied cercozoan and endomyxan communities in biocrusts from two unique habitats (subarctic grassland and temperate dunes). The communities differed strongly, with the grassland and dunes being dominated by Sarcomonadea (69%) and Thecofilosea (43%), respectively. Endomyxa and Phytomyxea were the minor components in dunes. Sandonidae, Allapsidae, and Rhogostomidae were the most abundant taxa in both habitats. In terms of functionality, up to 69% of the grassland community was constituted by bacterivorous Cercozoa. In contrast, cercozoan and endomyxan communities in dunes consisted of 31% bacterivores, 25% omnivores, and 20% eukaryvores. Facultative and obligate eukaryvores mostly belonged to the families Rhogostomidae, Fiscullidae, Euglyphidae, Leptophryidae, and Cercomonadidae, most of which are known to feed mainly on algae. Biocrust edaphic parameters such as pH, total organic carbon, nitrogen, and phosphorus did not have any significant influence on shaping cercozoan communities within each habitat, which confirms previous results from dunes.
Collapse
Affiliation(s)
- Samira Khanipour Roshan
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (U.K.); (K.G.)
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; (K.D.); (M.B.)
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; (K.D.); (M.B.)
| | - Peter Leinweber
- Faculty of Agriculture and Environmental Sciences, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany;
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (U.K.); (K.G.)
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (U.K.); (K.G.)
| |
Collapse
|
10
|
Nguyen BAT, Chen QL, He JZ, Hu HW. Oxytetracycline and Ciprofloxacin Exposure Altered the Composition of Protistan Consumers in an Agricultural Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9556-9563. [PMID: 32649822 DOI: 10.1021/acs.est.0c02531] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protists, an integral component of soil microbiome, are one of the main predators of bacteria. Bacteria can produce toxic secondary metabolites, e.g., antibiotics to fight stress under the predation pressure of protists; however, impacts of antibiotics on the profile of protists in soils remain unclear. Here, we constructed a microcosm incubation to investigate the effects of two common antibiotics, oxytetracycline and ciprofloxacin, on the protistan and bacterial communities in an arable soil. Rhizaria were the most abundant protist supergroup, followed by Amoebozoa, Stramenopiles, and Aveolata. Among trophic functional groups, consumers were predominant within the protistan community. The protistan alpha-diversity was not significantly changed, while the bacterial alpha-diversity was decreased under the pressure of antibiotics. Nevertheless, the antibiotic exposure considerably reduced the relative abundance of protistan lineages in Rhizaria and Amoebozoa, which were the dominant supergroups of protistan consumers, while increased the relative abundance of other consumer and phototrophic protists. Altogether, we provide novel experimental evidence that the bacterivorous consumers, an important functional group of protists, were more sensitive to antibiotics than other functional groups. Our findings have potential implications for the induced alterations of protistan community and their ecological functions under the scenarios of projected increasing global antibiotic usage.
Collapse
Affiliation(s)
- Bao-Anh T Nguyen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Öztoprak H, Walden S, Heger T, Bonkowski M, Dumack K. What Drives the Diversity of the Most Abundant Terrestrial Cercozoan Family (Rhogostomidae, Cercozoa, Rhizaria)? Microorganisms 2020; 8:E1123. [PMID: 32722603 PMCID: PMC7463998 DOI: 10.3390/microorganisms8081123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
Environmental sequencing surveys of soils and freshwaters revealed high abundance and diversity of the Rhogostomidae, a group of omnivorous thecate amoebae. This is puzzling since only a few Rhogostomidae species have yet been described and only a handful of reports mention them in field surveys. We investigated the putative cryptic diversity of the Rhogostomidae by a critical re-evaluation of published environmental sequencing data and in-depth ecological and morphological trait analyses. The Rhogostomidae exhibit an amazing diversity of genetically distinct clades that occur in a variety of different environments. We further broadly sampled for Rhogostomidae species; based on these isolates, we describe eleven new species and highlight important morphological traits for species delimitation. The most important environmental drivers that shape the Rhogostomidae community were soil moisture, soil pH, and total plant biomass. The length/width ratio of the theca was a morphological trait related to the colonized habitats, but not the shape and size of the aperture that is often linked to moisture adaption in testate and thecate amoebae.
Collapse
Affiliation(s)
- Hüsna Öztoprak
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Susanne Walden
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Thierry Heger
- Soil Science and Environment Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland;
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany; (H.Ö.); (S.W.); (M.B.)
| |
Collapse
|
12
|
Nguyen BAT, Chen QL, He JZ, Hu HW. Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135882. [PMID: 31818598 DOI: 10.1016/j.scitotenv.2019.135882] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.
Collapse
Affiliation(s)
- Bao-Anh Thi Nguyen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|