1
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03437-5. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
2
|
Chan JCF, Liew JH, Dudgeon D. High spatial variability in a species-rich assemblage of diadromous fishes in Hong Kong, southern China. JOURNAL OF FISH BIOLOGY 2024; 105:663-681. [PMID: 38831621 DOI: 10.1111/jfb.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
China has experienced substantial coastal reclamation and damming of rivers. These changes have the potential to impact migrations of diadromous fishes between the sea and fresh waters, but the composition of these fishes and the impacts of barriers to their movement in China have received little attention. We inventoried the species composition and distribution of diadromous fishes, and the impacts of barriers on them, in the Hong Kong Special Administrative Region (HKSAR), southern China. Fish assemblages were surveyed using hand-nets, supplemented by cast-netting and single-pass snorkel surveys, in 24 small coastal streams across three regions. Surveys were undertaken on multiple occasions during the wet and dry seasons to account for the monsoonal tropical climate. Twenty-eight diadromous fishes were collected, mostly gobies, amounting to over half (53%) of the total richness of primary freshwater fishes; four additional species are known from literature records. Diadromous richness was 48% greater during the wet season, when all species were encountered. Richness varied substantially among streams, from a maximum of 17 (2 streams that were diversity hot spots) to none (3 streams). The most widespread diadromous fish was Glossogobius giuris (71% frequency of occurrence), followed by Mugil cephalus (58% occurrence) and Eleotris oxycephala (50% occurrence). The remaining 25 diadromous fishes occurred in fewer than half of the streams; 12 species were confined to a single stream and may be locally threatened. There were conspicuous spatial differences in diadromous assemblages across HKSAR, despite its limited extent (1114 km2), the proximity of the surveyed streams, and the broad geographic distribution of most species. Regional species assemblages were influenced by localized habitat characteristics, with a noticeable distinction between areas with and without large, fast-flowing, and highly oxygenated streams. The presence of in-stream barriers (weirs: 0.3-8.7 m high) did not affect spatial patterns in species assemblages, although, on average, diadromous richness was lower in weir-obstructed streams (4.0 vs. 6.9 species in unobstructed streams). In total, 18 species were confined to unobstructed streams or sections below weirs, whereas the remaining 10 species were recorded both above and below weirs. Only the mottled eel (Anguilla marmorata) and a goby (Stiphodon multisquamus) were able to ascend weirs over 2 m. Although at least 400 m of the lower course of each stream was sampled, diadromous fishes were confined to the first 300 m in 12 of the 13 weir-obstructed streams. Remarkably, the tally of 32 diadromous species in HKSAR exceeds the 19 known from mainland China, highlighting the need for further research on composition and conservation status of diadromous fishes.
Collapse
Affiliation(s)
- Jeffery C F Chan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Science Unit, Lingnan University, Tuen Mun, Hong Kong
| | - Jia Huan Liew
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
3
|
Starr K, Montesanto F, Perisho E, Aluthge N, Pegg M, Fernando SC. Gut Microbial Composition of Cyprinella lutrensis (Red Shiner) and Notropis stramineus (Sand Shiner): Insights from Wild Fish Populations. MICROBIAL ECOLOGY 2024; 87:75. [PMID: 38775958 PMCID: PMC11111511 DOI: 10.1007/s00248-024-02386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
The gut microbiome is a highly intricate ecosystem that exerts a pivotal influence on the host's physiology. Characterizing fish microbiomes is critical to understanding fish physiology and health, but little is known about the ecology and colonization dynamics of microorganisms inhabiting fish species. In this study, we investigated the bacterial communities of two small-bodied fish species, Cyprinella lutrensis (red shiner) and Notropis stramineus (sand shiner), two fish species where gut microbiomes have not been investigated previously and surrounding waters, collected from rivers in Nebraska, USA. Our study focused on evaluating microbial diversity in small-bodied fish and identifying autochthonous microbes present within these species irrespective of location to better understand bacterial community composition and possible roles of such bacterial species. Our results revealed that both red shiner and sand shiner exhibited gut bacterial communities dominated by typical bacterial phyla found in freshwater fish. The phylum Bacteroidota was minimally abundant in both species and significantly lower in relative abundance compared to the surrounding water microbial community. Furthermore, we found that the gut microbiomes of red shiner and sand shiner differed from the microbial community in the surrounding water, suggesting that these fish species contain host-associated bacterial species that may provide benefits to the host such as nutrient digestion and colonization resistance of environmental pathogens. The fish gut bacterial communities were sensitive to environmental conditions such as turbidity, dissolved oxygen, temperature, and total nitrogen. Our findings also show bacterial community differences between fish species; although they shared notable similarities in bacterial taxa at phyla level composition, ASV level analysis of bacterial taxa displayed compositional differences. These findings contribute to a better understanding of the gut bacterial composition of wild, freshwater, small-bodied fish and highlight the influence of intrinsic (host) and environmental factors on shaping the bacterial composition.
Collapse
Affiliation(s)
- Krista Starr
- University of NE-Lincoln, 3310 Holdrege Street, Lincoln, NE, 68583, USA
| | | | - Esther Perisho
- University of NE-Lincoln, 3310 Holdrege Street, Lincoln, NE, 68583, USA
| | - Nirosh Aluthge
- University of NE-Lincoln, 3310 Holdrege Street, Lincoln, NE, 68583, USA
| | - Mark Pegg
- University of NE-Lincoln, 3310 Holdrege Street, Lincoln, NE, 68583, USA.
| | - Samodha C Fernando
- University of NE-Lincoln, 3310 Holdrege Street, Lincoln, NE, 68583, USA.
| |
Collapse
|
4
|
Lin L, Deng W, Huang X, Kang B. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecol Evol 2021; 11:11533-11548. [PMID: 34429938 PMCID: PMC8366846 DOI: 10.1002/ece3.7945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Freshwater biodiversity is currently under multiple threats. Conservation of freshwater fish biodiversity needs to be prioritized because natural conservation resources are always limited.Samples were collected at 24 sites in the Min River, the largest basin in southeastern China. Taxonomic, functional, and phylogenetic diversity were analyzed. Biodiversity vulnerability was measured by removing one species each time out of the community with replacement.Results suggested that hotspots for taxonomic and phylogenetic diversity were located at two impounded sites, while for functional diversity were those sites with no upstream dams. Little congruence was observed between taxonomic, functional, and phylogenetic diversity. Fragmentation of river network connectivity caused by dams was a significant factor affecting the biodiversity patterns. Beta turnover was the driving component for beta diversity, indicating that biodiversity dissimilarity along the river was mostly explained by environmental sorting. Fifteen out of 16 species that contributed the most to different facets of biodiversity were mostly endemic, either they had distinctive functional traits or they were the most prevalent species. Sites with the highest diversity vulnerability were characterized by these distinctive species. Functional diversity was more vulnerable to species loss comparing with the other two biodiversity facets.Prioritizing those biodiversity hotspots, sites with extreme functional vulnerability, and those distinctive endemic species which contributed the most to biodiversity vulnerability is suggested in the Min River. The study found evidence that congruence among different facets of biodiversity is hard to achieve, and functional diversity is the most vulnerable in a freshwater system fragmented by intensive dam constructions. This work will help to develop systematic conservation planning from the perspective of different biodiversity facets.
Collapse
Affiliation(s)
- Li Lin
- College of FisheriesOcean University of ChinaQingdaoChina
| | - Weide Deng
- Department of OceanographyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Henry Fok College of Biology and AgricultureShaoguan UniversityShaoguanChina
| | - Xiaoxia Huang
- Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low‐Latitude Plateau RegionSchool of Earth ScienceYunnan UniversityKunmingChina
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China)Ministry of EducationQingdaoChina
| |
Collapse
|
5
|
Wang L, Zhu L, Tang K, Liu M, Xue X, Wang G, Wang Z. Population genetic structure of sharpbelly Hemiculter leucisculus (Basilesky, 1855) and morphological diversification along climate gradients in China. Ecol Evol 2021; 11:6798-6813. [PMID: 34141257 PMCID: PMC8207360 DOI: 10.1002/ece3.7528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/08/2022] Open
Abstract
Sharpbelly Hemiculter leucisculus (Basilewski, 1855) is a small, widespread, and native cyprinid fish with prominent habitat suitability and high invasive potential and is becoming the dominant species in freshwater ecosystems under intensified environmental disturbances. But how H. leucisculus acclimates to extremely heterogeneous environments remains unclear. In current study, the genetic structure of H. leucisculus was analyzed using Bayesian phylogenetic inference, haplotype network, and STRUCTURE base on cytb gene across 18 populations spanning 20 degrees of latitude and 18 degrees of longitude in China. The morphological diversification of body size and shape for H. leucisculus along the climate gradient was studied. The results showed that the 18 H. leucisculus populations were divided into 3 clusters: one cluster mainly from Huanghe River Basin, another cluster mainly from Yangzi River Basin, and H cluster containing Hainan and Beihai populations. The fish from southern populations were deeper bodied while individuals from northern populations were more slender. Inland individuals were more streamlined while coastal individuals were of deeper body. The partial Mantel test predicts that the potential mechanism underlining the intraspecies morphological diversification along climate gradients is primarily the divergent selection pressures among different environments, while genetic variation had less contribution to morphological differentiation. The formation of the Nanling Mountain Range could drive genetic differentiation between Beihai population and those from Yangzi River Basin. The present results highlight strong selective pressures of climate on widespread species and enrich morphological differentiation basis of acclimation for species with high habitat suitability and invasive potential.
Collapse
Affiliation(s)
- Lihong Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Long Zhu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Kui Tang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Mengyu Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xue Xue
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Gaoxue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zaizhao Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
6
|
Turgeon K, Turpin C, Gregory-Eaves I. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol Lett 2019; 22:1501-1516. [PMID: 31112010 DOI: 10.1111/ele.13283] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Dams are recognised to impact aquatic biodiversity, but the effects and conclusions diverge across studies and locations. By using a meta-analytical approach, we quantified the effects of impoundment on fish communities distributed across three large biomes. The impacts of dams on richness and diversity differed across biomes, with significant declines in the tropics, lower amplitude but similar directional changes in temperate regions, and no changes in boreal regions. Our analyses showed that non-native species increased significantly in tropical and temperate regulated rivers, but not in boreal rivers. In contrast, temporal trajectories in fish assemblage metrics were common across regions, with all biomes showing an increase in mean trophic level position and in the proportion of generalist species after impoundment. Such changes in fish assemblages may affect food web stability and merit closer study. Across the literature examined, predominant mechanisms that render fish assemblages susceptible to impacts from dams were: (1) the transformation of the lotic environment into a lentic environment; (2) habitat fragmentation and (3) the introduction of non-native species. Collectively, our results highlight that an understanding of the regional context and a suite of community metrics are needed to make robust predictions about how fish will respond to river impoundments.
Collapse
Affiliation(s)
- Katrine Turgeon
- Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal, Québec, Canada, H3A 1B1.,Hydro-Québec, Governance and Strategic Issues, 75 René-Lévesque, Montréal, Québec, Canada, H2Z 1A4.,Université du Québec en Outaouais, Natural Sciences Department, 58, Rue Principale, Ripon, Québec, Canada, J0V 1V0
| | - Christian Turpin
- Hydro-Québec, Governance and Strategic Issues, 75 René-Lévesque, Montréal, Québec, Canada, H2Z 1A4
| | - Irene Gregory-Eaves
- Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal, Québec, Canada, H3A 1B1
| |
Collapse
|
7
|
Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam. Sci Rep 2019; 9:4212. [PMID: 30862788 PMCID: PMC6414653 DOI: 10.1038/s41598-019-38993-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/31/2018] [Indexed: 11/29/2022] Open
Abstract
Dams have well-documented ecological impacts on downstream river segments; however, long-term impacts of river impoundment have rarely been investigated in upstream reaches. Using data from long-term standardized surveys, we analyzed temporal changes in fish assemblages in the Yangtze River upstream of the Three Gorges Dam (TGD) before, during and after its construction. Our analysis indicated fish assemblage regime shifts in the two closer reaches in 2008, in accordance with the filling to 172.5 m in 2008; and in the other reach, farthest from the TGD, in 2011, indicating timing of the effects being related to distance. These shifts were evident in relative abundance of native fish species rather than non-native species and have altered community structures and functional groups. Relative abundance of the lotic guilds declined in the two closer reaches, but increased in the farthest. Invertivores declined, but piscivores and opportunistic life-history strategists increased in all reaches. We conclude that construction of TGD had led to significant changes in species distributions influenced by species functional traits. Our findings emphasize the need for long-term monitoring of fish assemblages before and after dam construction in order to understand ecological responses to hydrological changes for effective resource management in regulated rivers.
Collapse
|
8
|
Fish Assemblage Response to Altered Dendritic Connectivity in the Red River Basin, Central Louisiana. AMERICAN MIDLAND NATURALIST 2019. [DOI: 10.1674/0003-0031-181.1.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Pease JE, Grabowski TB, Pease AA, Bean PT. Changing environmental gradients over forty years alter ecomorphological variation in Guadalupe Bass Micropterus treculii throughout a river basin. Ecol Evol 2018; 8:8508-8522. [PMID: 30250719 PMCID: PMC6145027 DOI: 10.1002/ece3.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding the degree of intraspecific variation within and among populations is a key aspect of predicting the capacity of a species to respond to anthropogenic disturbances. However, intraspecific variation is usually assessed at either limited temporal, but broad spatial scales or vice versa, which can make assessing changes in response to long-term disturbances challenging. We evaluated the relationship between the longitudinal gradient of changing flow regimes and land use/land cover patterns since 1980 and morphological variation of Guadalupe Bass Micropterus treculii throughout the Colorado River Basin of central Texas. The Colorado River Basin in Texas has experienced major alterations to the hydrologic regime due to changing land- and water-use patterns. Historical collections of Guadalupe Bass prior to rapid human-induced change present the unique opportunity to study the response of populations to varying environmental conditions through space and time. Morphological differentiation of Guadalupe Bass associated with temporal changes in flow regimes and land use/land cover patterns suggests that they are exhibiting intraspecific trait variability, with contemporary individuals showing increased body depth, in response to environmental alteration through time (specifically related to an increase in herbaceous land cover, maximum flows, and the number of low pulses and high pulses). Additionally, individuals from tributaries with increased hydrologic alteration associated with urbanization or agricultural withdrawals tended to have a greater distance between the anal and caudal fin. These results reveal trait variation that may help to buffer populations under conditions of increased urbanization and sprawl, human population growth, and climate risk, all of which impose novel selective pressures, especially on endemic species like Guadalupe Bass. Our results contribute an understanding of the adaptability and capacity of an endemic population to respond to expected future changes based on demographic or climatic projection.
Collapse
Affiliation(s)
- Jessica E. Pease
- Texas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
| | - Timothy B. Grabowski
- U.S. Geological SurveyTexas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
- Present address:
U.S. Geological SurveyHawaii Cooperative Fishery Research UnitUniversity of Hawaii at HiloHiloHawaii
| | - Allison A. Pease
- Department of Natural Resources ManagementTexas Tech UniversityLubbockTexas
| | - Preston T. Bean
- Heart of the Hills Fisheries Science CenterTexas Parks and WildlifeMountain HomeTexas
| |
Collapse
|
10
|
Matthews WJ, Marsh-Matthews E. Comparison of Historical and Recent Fish Distribution Patterns in Oklahoma and Western Arkansas. COPEIA 2015. [DOI: 10.1643/ce-14-005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|