1
|
Cao S, Guan L, Li C, Sun G, Tian H, Sun R, Tu J, Meng Y, Ma R. Effects of Dietary Protein and Lipid Levels on Growth, Metabolism, Antioxidative Capacity, and Fillet Quality of Adult Triploid Rainbow Trout Farmed in Net Cage. AQUACULTURE NUTRITION 2023; 2023:4733343. [PMID: 37288329 PMCID: PMC10243945 DOI: 10.1155/2023/4733343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
The research is aimed at investigating the effects of dietary protein and lipid levels on adult triploid rainbow trout growth performance, feed utilization, digestive and metabolic enzyme activities, antioxidative capacity, and fillet quality. Nine diets containing three dietary protein levels (DP) (300, 350, and 400 g kg-1) and three dietary lipid levels (DL) (200, 250, and 300 g kg-1) were prepared using a 3 × 3 factorial design. In freshwater cages, 13,500 adult female triploid rainbow trout (3.2 ± 0.1 kg) were cultured for 77 days. Triplicate cages (500 fish per cage) were used as repetitions of each experimental diet. The findings revealed that as DP increased to 400 g kg-1 and DL raised to 300 g kg-1, the weight gain ratio (WGR) elevated significantly (P < 0.05). However, when DP ≥ 350 g kg-1, WGR was similar in the DL250 and DL300 groups. As DP raised to 350 g kg-1, the feed conversion ratio (FCR) notably decreased (P < 0.05). In the DP350DL300 group, lipids had a protein-sparing impact. High DP diet (400 g kg-1) generally improved fish health status by increasing antioxidant capacity in the liver and intestine. A high DL diet (300 g kg-1) showed no harmful effect on hepatic health based on plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and antioxidant capacity in the liver. For fillet quality, a high DP diet could increase fillet yield, improve fillet hardness, springiness, and water-holding capacity values, and inhibit the production of off-flavors caused by n-6 fatty acids. A high DL diet could increase odor intensity, and EPA, DHA, and n-3 fatty acid concentrations decrease the thrombogenicity index value. The maximum fillet redness value was discovered in the DP400DL300 group. Overall, for adult triploid rainbow trout (≥3 kg), the minimum recommended DP and DL according to growth performance were 400 and 250 g kg-1, respectively; DP and DL based on feed utilization were 350 and 200 g kg-1, respectively; DP and DL based on fillet quality were 400 and 300 g kg-1, respectively.
Collapse
Affiliation(s)
- Songjing Cao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Lingling Guan
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Guoliang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Haining Tian
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Ruijian Sun
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Jun Tu
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Idenyi JN, Eya JC, Abanikannda MF, Huber DH, Gannam AL, Sealey WM. Dynamics of mitochondrial adaptation and energy metabolism in rainbow trout (Oncorhynchus mykiss) in response to sustainable diet and temperature. J Anim Sci 2023; 101:skad348. [PMID: 37813378 PMCID: PMC10625652 DOI: 10.1093/jas/skad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Impacts of plant-based ingredients and temperatures on energy metabolism in rainbow trout was investigated. A total of 288 fish (mean body weight: 45.6 g) were fed four isocaloric, isolipidic, and isonitrogenous diets containing 40% protein and 20% lipid and formulated as 100% animal-based protein (AP) and a blend of 50% fish oil (FO) and 50% camelina oil (CO); 100% AP and100% CO; 100% plant-based protein (PP) and a blend of 50% FO and 50% CO or 100% PP and 100% CO at 14 or 18 °C for 150 d. Diet did not significantly affect weight gain (WG) (P = 0.1902), condition factor (CF) (P = 0.0833) or specific growth rate (SGR) (P = 0.1511), but diet significantly impacted both feed efficiency (FE) (P = 0.0076) and feed intake (FI) (P = 0.0076). Temperature did not significantly affect WG (P = 0.1231), FE (P = 0.0634), FI (P = 0.0879), CF (P = 0.8277), or SGR (P = 0.1232). The diet × temperature interaction did not significantly affect WG (P = 0.7203), FE (P = 0.4799), FI (P = 0.2783), CF (P = 0.5071), or SGR (P = 0.7429). Furthermore, temperature did not influence protein efficiency ratio (P = 0.0633), lipid efficiency ratio (P = 0.0630), protein productive value (P = 0.0756), energy productive value (P = 0.1048), and lipid productive value (P = 0.1386); however, diet had significant main effects on PER (P = 0.0076), LPV (P = 0.0075), and PPV (P = 0.0138). Temperature regimens induced increased activities of mitochondrial complexes I (P = 0.0120), II (P = 0.0008), III (P = 0.0010), IV (P < 0.0001), V (P < 0.0001), and citrate synthase (CS) (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), and CS (P = 0.0122) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), and III (P < 0.0001) in the liver. Similarly, dietary composition significantly affected complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), III (P = 0.0002), IV (P < 0.0001), V (P = 0.0060), and CS (P < 0.0001) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the liver activities except complex III activities in intestine (P = 0.0817) and liver (P = 0.4662). The diet × temperature interaction impacted CS activity in the intestine (P = 0.0010), complex II in the muscle (P = 0.0079), and complexes I (P = 0.0009) and II (P = 0.0348) in the liver. Overall, comparing partial to full dietary substitution of FO with CO, partial dietary replacement showed similar effects on complex activities.
Collapse
Affiliation(s)
- John N Idenyi
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Jonathan C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mosope F Abanikannda
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - David H Huber
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Ann L Gannam
- Abernathy Fish Technology Center Longview, 1440 Abernathy Creek Road, WA 98632, USA
| | - Wendy M Sealey
- USDA ARS Bozeman Fish Technology Center 4050 Bridger Canyon Road, Bozeman, MT 59715-8433, USA
| |
Collapse
|
3
|
Meng Y, Liu X, Guan L, Bao S, Zhuo L, Tian H, Li C, Ma R. Does Dietary Lipid Level Affect the Quality of Triploid Rainbow Trout and How Should It Be Assessed? Foods 2022; 12:15. [PMID: 36613231 PMCID: PMC9818296 DOI: 10.3390/foods12010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Organoleptic properties and nutritional value are the most important characteristics of fish fillet quality, which can be determined by a series of quality evaluation indexes and closely related to fish nutrition. Systematic organoleptic and nutritional quality evaluation indexes consisting of 139 indexes for physical properties and chemical compositions of triploid rainbow trout were established. Besides, effects of dietary lipid levels (6.6%, 14.8%, 22.8% and 29.4%) on the quality of triploid rainbow trout were analyzed in the study. The main results showed that, for fillet appearance quality, fish fed diets with lipid levels above 22.8% had higher fillet thickness and redness but lower gutted yield and fillet yield (p < 0.05). For fillet texture, fish fed the diet with a 6.6% lipid level had the highest fillet hardness (5.59 N) and lowest adhesiveness (1.98 mJ) (p < 0.05), which could be related to lipid, glycogen, water soluble protein and collagen contents of the fish fillet. For fillet odor, the odor intensity of “green, fatty and fishy” significantly increased with the increase of the dietary lipid level (from 1400 to 2773 ng/g muscle; p < 0.05), which was related to the degradation of n-6 and n-9 fatty acids. For fillet taste, a high lipid diet (≥22.8%) could increase the umami taste compounds contents (from 114 to 261 mg/100 g muscle) but decrease the bitterness and sourness taste compounds contents (from 127 to 106 mg/100 g muscle and from 1468 to 1075 mg/100 g muscle, respectively) (p < 0.05). For nutritional value, a high lipid diet could increase the lipid nutrition level (such as the content of long chain polyunsaturated fatty acids increased from 3.47 to 4.41 g/kg muscle) but decease tryptophan and selenium content (from 2.48 to 1.60 g/kg muscle and from 0.17 to 0.11 g/kg muscle, respectively). In total, a high lipid diet could improve the quality of triploid rainbow trout. The minimum dietary lipid level for triploid rainbow trout should be 22.8% to keep the better organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Xiaohong Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lingling Guan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shoumin Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linying Zhuo
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Haining Tian
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
4
|
Nuez-Ortín WG, Carter CG, Wilson R, Cooke IR, Amoroso G, Cobcroft JM, Nichols PD. Triploid Atlantic salmon shows similar performance, fatty acid composition and proteome response to diploids during early freshwater rearing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:67-77. [PMID: 28214702 DOI: 10.1016/j.cbd.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Abstract
There is currently renewed interest in farming triploid Atlantic salmon. Improving farming requires identifying triploid specific phenotypic and physiological traits that are uniquely derived from ploidy per se and developed under optimal growing conditions. This study investigated firstly, the impact of ploidy on growth performance and whole body composition of Atlantic salmon at different early freshwater stages [34dph (days post-hatching) alevin, 109dph fry, and 162dph parr] and secondly, whether phenotypic differences at these stages were reflected in protein samples collected from whole fish, white muscle or liver tissue. Female diploid and triploid Atlantic salmon (n=3) were first fed at 35dph and then maintained by feeding to satiation on commercial feeds. Triploids were significantly lower in weight at the late alevin and fry stages but matched diploid weight at the parr stage. The whole-body lipid content was significantly higher for triploids at the parr stage, while the whole-body lipid class profile was broadly similar and was largely not affected by ploidy. Comparative label-free shotgun proteomic analysis did not detect significant alterations in protein expression between diploids and triploids at any growth stage. The present results indicate that ploidy under optimal growing conditions and during early freshwater stages only result in small phenotypic differences in weight and whole body lipid content that were not reflected at the proteome level. These findings suggest that optimal husbandry conditions for freshwater Atlantic salmon are similar between ploidies, at least for all-female populations.
Collapse
Affiliation(s)
- Waldo G Nuez-Ortín
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia; CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia.
| | - Chris G Carter
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Gianluca Amoroso
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Jennifer M Cobcroft
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Peter D Nichols
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia; CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| |
Collapse
|
5
|
Eya JC, Ukwuaba VO, Yossa R, Gannam AL. Interactive effects of dietary lipid and phenotypic feed efficiency on the expression of nuclear and mitochondrial genes involved in the mitochondrial electron transport chain in rainbow trout. Int J Mol Sci 2015; 16:7682-706. [PMID: 25853266 PMCID: PMC4425043 DOI: 10.3390/ijms16047682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 01/15/2023] Open
Abstract
A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish.
Collapse
Affiliation(s)
- Jonathan C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| | - Vitalis O Ukwuaba
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| | - Rodrigue Yossa
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| | - Ann L Gannam
- USFWS, Abernathy Fish Technology Center, Longview, WA 98632, USA.
| |
Collapse
|