1
|
Khaw HL, Gjerde B, Boison SA, Hjelle E, Difford GF. Quantitative Genetics of Smoltification Status at the Time of Seawater Transfer in Atlantic Salmon ( Salmo Salar). Front Genet 2021; 12:696893. [PMID: 34790218 PMCID: PMC8591024 DOI: 10.3389/fgene.2021.696893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
High mortality during grow out in the sea is a challenge for farmed Atlantic salmon production in Norway and globally, which is partly attributed to suboptimal smolt quality. In this study, two groups of pre-smolts were put on a standard light smoltification regime with alternating 12L:12D per day for 6 weeks (Phase I), followed by 24L:0D per day for 6 weeks (Phase II); one group was 0 + smolt (EXP1) and the other 1 + smolt (EXP2). To monitor the smoltification status of the fish, 100 (EXP1) and 60 (EXP2) fish were randomly sampled per week during Phase II. The following phenotypes for smoltification status were studied: RT-qPCR relative mRNA expression of values of two alpha catalytic subunits of the variants of the Na+K+ATPase (NKA) expressed in the sampled gill tissues of each fish. The first variant, alpha1a with increased expression in freshwater (FW) and the second variant alpha1b with increased expression in seawater variant (SW), as well as their ratio SW/FW. At the optimal time for seawater transfer based on the SW/FW trait, 1,000 (at sixth sampling of EXP1) and 1,500 (at fifth sampling of EXP2) fish were sampled for genetic parameter estimation. The individual variation in FW, SW, and SW/FW was very large at each of the seven samplings indicating a large variation among individuals in the optimum time of transfer to seawater. SW/FW showed significant genetic variation in both 0+ and 1+ smolts, which indicates the possibility for selection for improved synchronization of smoltification status of Atlantic salmon at the time where the largest proportion of the fish is considered to be smolt. However, the genetic correlation between SW/FW of 0+ and 1+ was not significantly different from zero indicating very little shared genetic variation in SW/FW in 0+ and 1+ fish. Smoltification phenotypes showed temporal progression over the smoltification period, and this progression varied between 0+ and 1+ smolt highlighting the importance of correctly timing the major sampling point, and when cohorts are transferred to seawater. This also highlighted the need for further research into noninvasive methods of objectively measuring individual smoltification through time and subsequent smolt survival and growth rate at sea.
Collapse
Affiliation(s)
- Hooi Ling Khaw
- Department of Breeding and Genetics, Nofima AS, Osloveien, Norway
| | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima AS, Osloveien, Norway
| | - Solomon A Boison
- Department of Breeding and Genetics, Nofima AS, Osloveien, Norway.,Mowi ASA, Bergen, Norway
| | | | - Gareth F Difford
- Department of Breeding and Genetics, Nofima AS, Osloveien, Norway
| |
Collapse
|
2
|
Finlay RW, Poole R, Rogan G, Dillane E, Cotter D, Reed TE. Hyper- and Hypo-Osmoregulatory Performance of Atlantic Salmon (Salmo salar) Smolts Infected With Pomphorhynchus tereticollis (Acanthocephala). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migratory species must cope with different parasite communities in different environments, but little is known about the ecophysiological effects of parasites on migratory performance. Some species/strains of acanthocephalan parasites in the genus Pomphorhynchus use anadromous salmonids as preferred definitive hosts, perforating the intestines, destroying mucosa and inducing inflammation–all of which might affect osmoregulatory function during transition between freshwater and marine environments. We used genetic barcoding to identify acanthocephalans in the intestines of wild Irish Atlantic salmon (Salmo salar L.) smolts as being the recently taxonomically resurrected species Pomphorhynchus tereticollis. We then investigated whether natural infection intensities of this parasite were associated with reduced osmoregulatory performance, as measured by plasma chloride concentrations, or potentially elevated stress, as measured by blood glucose, of hosts in freshwater or saltwater environments (24 or 72 h in ∼26PPT salt water, reflecting salinities of coastal waters through which smolts migrate). Although infection prevalence was high amongst sampled smolts, no associations were found within or across treatment groups between parasite abundance and plasma chloride concentrations or blood glucose levels. We found no intestinal perforations that would indicate P. tereticollis had recently vacated the intestines of smolts in either of the saltwater groups. Exploratory sampling in the 2 years preceding the experiment indicated that parasite prevalence and abundance are consistently high and comparable to the experimental individuals. Collectively, these results indicate that naturally occurring abundances of P. tereticollis do not reduce osmoregulatory function or affect blood glucose content in fresh water or within 72 h of entering coastal waters, although delayed pathologies affecting marine survival may occur. Future consideration of ecophysiological interactions between anadromous fish hosts and their parasites across different osmotic environments should provide general insights into coevolution between migratory hosts and their parasites.
Collapse
|
3
|
Ge J, Huang M, Zhou Y, Liu C, Han C, Gao Q, Dong Y, Dong S. Effects of different temperatures on seawater acclimation in rainbow trout Oncorhynchus mykiss: osmoregulation and branchial phospholipid fatty acid composition. J Comp Physiol B 2021; 191:669-679. [PMID: 33818627 DOI: 10.1007/s00360-021-01363-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the effects of different temperatures on seawater acclimation in rainbow trout (Oncorhynchus mykiss), in terms of growth performance, osmoregulatory capacity, and branchial phospholipid fatty acid (PLFA) composition. The fish (initial weight, 94.73 g) were reared at 9, 12.5, and 16 °C for 28 days, then acclimated to seawater, and subsequently reared for 14 days. Sampling points were on the last day in freshwater, and the 1st, 4th, 7th, and 14th days after the salinity reached 30. The results showed the final weight, percent weight gain, and specific growth rate of rainbow trout at 12.5 °C were significantly higher than those at 9 °C, while the thermal growth coefficient at 16 °C was significantly lower than that in other treatments. The branchial PLFA composition in rainbow trout changed more rapidly at 9 and 12.5 °C than at 16 °C. The branchial PLFA composition was significantly affected by temperature and salinity and their interaction. The polyunsaturated fatty acid content of phospholipids in the gill at 9 and 12.5 °C was significantly higher than those at 16 °C. Low temperature (9 °C) and seawater acclimation significantly increased the degree of unsaturation of membrane, enhancing membrane fluidity, which is related to Na+-K+ ATPase activity. Responses of plasma ion, Na+-K+ ATPase activity, and plasma glucose followed a similar pattern at different temperatures. Overall, the study suggests that 12.5 °C is the ideal temperature for seawater acclimation in rainbow trout.
Collapse
Affiliation(s)
- Jian Ge
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China
| | - Ming Huang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China
| | - Yangen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China. .,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong, China.
| | - Chengyue Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Cui Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong, China
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong, China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266100, Shandong, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong, China
| |
Collapse
|
4
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
5
|
Wong MKS, Nobata S, Hyodo S. Enhanced osmoregulatory ability marks the smoltification period in developing chum salmon (Oncorhynchus keta). Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110565. [PMID: 31493553 DOI: 10.1016/j.cbpa.2019.110565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-dependent SW acclimating ability in chum salmon alevins and found a sharp increase in SW tolerance during development that resembles the physiological parr-smolt transformation seen in other salmonids. Perturbation of plasma Na+ after SW exposure was prominent from the hatched embryo stage to emerged alevins, but the plasma Na+ became highly stable and more resistant to perturbation soon after complete absorption of yolk. Marker gene expression for SW-ionocytes including Na/K-ATPase (NKA α1b), Na-K-Cl cotransporter 1a (NKCC1a), Na/H exchanger 3a (NHE3a), cystic fibrosis transmembrane conductance regulators (CFTR I and CFTR II) were all upregulated profoundly at the same stage when the alevins were challenged by SW, suggesting that the stability of plasma Na+ concentration was partly a result of elevated osmoregulatory capability. FW-ionocyte markers including NKA α1a and NHE3b were consistently downregulated independent of stage by SW exposure, suggesting that embryos at all stages respond to salinity challenge, but the increase in SW osmoregulatory capability is restricted to the developmental stage after emergence. We propose that the "smoltification period" is condensed and integrated into the early development of chum salmon, and our results can be extrapolated to the future studies on hormonal controls and developmental triggers for smoltification in salmonids.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| | - Shigenori Nobata
- International Coastal Research Center, Atmosphere and Ocean Research Institute, the University of Tokyo, Otsuchi, Iwate, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
6
|
Sui Y, Huang X, Kong H, Lu W, Wang Y. Physiological responses to salinity increase in blood parrotfish (Cichlasoma synspilum ♀ × Cichlasoma citrinellum ♂). SPRINGERPLUS 2016; 5:1246. [PMID: 27536529 PMCID: PMC4972809 DOI: 10.1186/s40064-016-2930-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
This study aims to evaluate the effects of adding salt to water on the physiological parameters of the blood parrot cichlid (Cichlasoma synspilum ♀ × Cichlasoma citrinellum ♂). The blood parrot cichlid is a popular species in the aquarium trade because of its behaviour and beauty. Salt is usually added to water during the culture or transportation of this fish. However, the manner by which the fish adjusts its physiological responses to salinity change is unclear. The effects of salinity on serum osmolality, immune-related enzyme activities, Na+–K+-ATPase activities in the gill, skin carotenoid content and oxygen consumption were analysed. Blood parrotfish individuals were transferred from freshwater to water with four salinity levels (0.16, 2.5, 5 and 7.5 ‰) for 168 h, and physiological responses were evaluated at 0, 6, 12, 24 and 168 h. Results showed no significant differences in serum acid phosphatase and alkaline phosphatase activities, skin carotenoid content and oxygen consumption rate among the different groups. However, the serum osmolality at 6 h was significantly elevated. Moreover, salinity increase stimulated superoxide dismutase (SOD) activity from 0 to 6 h. SOD activity increased from 6 to 24 h but significantly reduced at 168 h when the fish were exposed to salt water. The SOD activity in the salinity 2.5 ‰ group recovered the initial level, whereas those in the salinity 5 and 7.5 ‰ groups decreased to levels lower than the initial level. The gill Na+–K+-ATPase activity significantly declined with time and salinity increase. Thus, adding an appropriate amount of salt can save energy consumption during osmoregulation and temporarily enhance the antioxidant activity of blood parrotfish. However, this strategy is insufficient for long-term culture. Therefore, adding salt to water only provides short-term benefit to blood parrot cichlid during transportation.
Collapse
Affiliation(s)
- Yanming Sui
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China.,Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090 China
| | - Xizhi Huang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China
| | - Hui Kong
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China
| | - Weiqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China
| | - Youji Wang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China
| |
Collapse
|
7
|
Gibbons TC, Rudman SM, Schulte PM. Responses to simulated winter conditions differ between threespine stickleback ecotypes. Mol Ecol 2016; 25:764-75. [DOI: 10.1111/mec.13507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Taylor C. Gibbons
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Seth M. Rudman
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
8
|
Characterizing diverse orthologues of the cystic fibrosis transmembrane conductance regulator protein for structural studies. Biochem Soc Trans 2015; 43:894-900. [DOI: 10.1042/bst20150081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.
Collapse
|