1
|
Zhao Y, Duan M, Lin X, Li W, Liu H, Meng K, Liu F, Hu W, Luo D. Molecular underpinnings underlying behaviors changes in the brain of juvenile common carp (Cyrinus carpio) in response to warming. J Adv Res 2024; 63:43-56. [PMID: 37956862 PMCID: PMC11380011 DOI: 10.1016/j.jare.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Global warming is increasing interest in how aquatic animals can adjust their physiological performance and cope with temperature changes. Therefore, understanding the behavioral changes and molecular underpinnings in fish under warming is crucial for both the individual and groups survival. This could provide experimental evidence and resource for evaluating the impact of global warming. OBJECTIVE Three genetic families of common carp (Cyprinus carpio) were generated. These juveniles were constructed short-term (4 days) and long-term (30 days) warming groups to investigate the effects of warming on behavioral responses and to elucidate the potential underlying mechanisms of warming-driven behavior. METHODS Behavioral tests were used to explore the effects of short- and long-term exposure to warming on the swimming behavior of C. carpio. Brain transcriptome combined with measurement of nervous system activity was used to further investigated the comprehensive neuromolecular mechanisms under warming. RESULTS Long-term warming groups had a more significant impact on the decline of swimming behavior in juvenile C. carpio. Furthermore, brain comparative transcriptomic analysis combined with measurement of nervous system activity revealed that genes involved in cytoskeletal organization, mitochondrial regulation, and energy metabolism are major regulators of behavior in the juvenile under warming. Importantly, especially in the long-term warming groups, enrichment analysis of associated gene expression suggested functional alterations of synaptic transmission and signal transduction leading to swimming function impairment in the central nervous system, as revealed by behavioral tests. CONCLUSIONS Our study provides evidence of the neurogenomic mechanism underlying the decreased swimming activity in juvenile C. carpio under warming. These findings have important implications for understanding the impacts of climate change on aquatic ecosystems and the organisms that inhabit them.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Weiwei Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hairong Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaifeng Meng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Xu Y, Jing Y, Zhou J, Long R, Meng J, Yang Y, Luo Y. Age, growth, and energy storage of the subterranean fish Triplophysa rosa (Cypriniformes: Nemacheilidae) from Chongqing, China. BMC Ecol Evol 2023; 23:72. [PMID: 38062389 PMCID: PMC10704779 DOI: 10.1186/s12862-023-02186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND This study explores the age, growth, and energy storage of Triplophysa rosa, a troglobitic cavefish. A total of 102 wild T. rosa specimens were collected in Wulong County, Chongqing, China, between 2018 and 2022, with otoliths used for age determination. RESULTS The earliest mature individuals were determined to be 4.8 years old, while the maximum ages for females and males were estimated at 15.8 years and 12.2 years, respectively. The length (L, cm)-weight (W, g) relationship was found to be the same for both sexes, following the eq. W = 0.0046 L3.03. Von Bertalanffy growth models were applied to the total length-at-age data, resulting in an asymptotic length of 23.4 cm and a K-parameter of 0.060 year-1. The body content of protein, ash, and glycogen did not show a significant correlation with the total length of T. rosa. However, both lipid and energy content exhibited a significant increase with total length. The lipid content ranged from 40.5 to 167.1 mg g-1, while the energy content ranged from 4.50 to 11.39 kJ g-1, indicating high storage features of T. rosa. CONCLUSIONS The results affirm that T. rosa exhibits life traits conducive to its population dynamics in cave conditions, characterized by slow growth, small size, and high lipid energy storage.
Collapse
Affiliation(s)
- Yuan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yangyang Jing
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Rui Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ya Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Koehn JD, Stuart IG, Todd CR. Integrating conventional risk management and population models to assess risks from an established invasive freshwater fish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116343. [PMID: 36352710 DOI: 10.1016/j.jenvman.2022.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Affiliation(s)
- John D Koehn
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, Victoria, 3084, Australia; Gulbali Institute, Charles Sturt University, PO Box 789, Albury, New South Wales, 2640, Australia.
| | - Ivor G Stuart
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, Victoria, 3084, Australia; Gulbali Institute, Charles Sturt University, PO Box 789, Albury, New South Wales, 2640, Australia
| | - Charles R Todd
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
4
|
Souza AT, Argillier C, Blabolil P, Děd V, Jarić I, Monteoliva AP, Reynaud N, Ribeiro F, Ritterbusch D, Sala P, Šmejkal M, Volta P, Kubečka J. Empirical evidence on the effects of climate on the viability of common carp (Cyprinus carpio) populations in European lakes. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02710-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Feher M, Fauszt P, Tolnai E, Fidler G, Pesti-Asboth G, Stagel A, Szucs I, Biro S, Remenyik J, Paholcsek M, Stundl L. Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio. PLoS One 2021; 16:e0248537. [PMID: 33886562 PMCID: PMC8062051 DOI: 10.1371/journal.pone.0248537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023] Open
Abstract
In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics.
Collapse
Affiliation(s)
- Milan Feher
- Institute of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Peter Fauszt
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Georgina Pesti-Asboth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Szucs
- Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| | - Laszlo Stundl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| |
Collapse
|
6
|
Maiztegui T, Baigún CR, Garcia de Souza JR, Weyl O, Colautti D. Population responses of common carp Cyprinus carpio to floods and droughts in the Pampean wetlands of South America. NEOBIOTA 2019. [DOI: 10.3897/neobiota.48.34850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Common carp (Cyprinuscarpio) is a global invader that exhibits a wide distribution in Argentina, particularly in shallow lakes and wetlands of the Pampean region. The hydrological conditions of these environments are driven by variations in annual precipitation that determine inter annual changes in water levels leading to flood-drought cycles. The present study focused on understanding the C.carpio population responses to annual rainfall regime and long-term flood and drought events in the Ajó wetlands located in the east of the Pampean region. The results of a two-year biological sampling program showed that C.carpio feeding rate, reproduction, condition, and recruitment were associated with the hydrological cycle. Otolith derived age structure of the population and back-calculated recruitment strength revealed that extraordinary flooding events generated strong cohorts while dry years resulted in low recruitment. Its long-life span (maximum 14 years in Ajó) coupled with a high fecundity, and broad diet allows C.carpio to persist in refugia during dry years and capitalize on wet years when inundation of the floodplain enhances recruitment and facilitates spread. Management and control strategies for this invader should therefore incorporate hydrological variability by promoting intensive removal campaigns during dry years when populations are dominated by large fish confined in remnant water-bodies and, during wet years, carp harvest fisheries should be promoted to reduce population density when increased connectivity is likely to facilitate spread.
Collapse
|