1
|
Shao M, Xu H, Ge X, Zhu J, Huang D, Ren M, Liang H. Salinity levels affect the lysine nutrient requirements and nutrient metabolism of juvenile genetically improved farmed tilapia ( Oreochromis niloticus). Br J Nutr 2022; 129:1-12. [PMID: 35674124 DOI: 10.1017/s0007114522001763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This 62-d research aimed to evaluate the effects of dietary lysine levels (DLL) and salinity on growth performance and nutrition metabolism of genetically improved farmed tilapia (GIFT) juveniles (Oreochromis niloticus). Six diets with lysine supplementation (1·34, 1·70, 2·03, 2·41, 2·72 and 3·04 % of DM) were formulated under different cultured salinities in a two-factorial design. The results indicated that supplemental lysine improved the specific growth rate (SGR) and weight gain (WG) and decreased the feed conversion ratio (FCR). Meanwhile, the fish had higher SGR and WG and lower FCR at 8 ‰ salinity. Except for moisture, the whole-body protein, lipid and ash content of GIFT were increased by 8 ‰ salinity, which showed that DLL (1·34 %) increased the whole-body fat content and DLL (2·41 %) increased whole-body protein content. Appropriate DLL up-regulated mRNA levels of protein metabolism-related genes such as target of rapamycin, 4EBP-1 and S6 kinase 1. However, 0 ‰ salinity reduced these protein metabolism-related genes mRNA levels, while proper DLL could improve glycolysis and gluconeogenesis mRNA levels but decrease lipogenesis-related genes mRNA levels in liver. 0 ‰ salinity improved GLUT2, glucokinase and G6 Pase mRNA levels; however, sterol regulatory element-binding protein 1 and fatty acid synthase mRNA levels were higher at 8 ‰ salinity. Moreover, 8 ‰ salinity also increased plasma total protein and cholesterol levels and decreased glucose levels. These results indicated that the recommended range of lysine requirement under different salinity was 2·03-2·20 % (0 ‰) and 2·20-2·41 % (8 ‰) and 8 ‰ salinity resulted in higher lysine requirements due to changes in the related nutrient metabolism, which might provide useful information for designing more effective feed formulations for GIFT cultured in different salinity environment.
Collapse
Affiliation(s)
- Ming Shao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi214081, People's Republic of China
| | - Hao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi214081, People's Republic of China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi214081, People's Republic of China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi214081, People's Republic of China
| | - Jian Zhu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi214081, People's Republic of China
| | - Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi214081, People's Republic of China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi214081, People's Republic of China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi214081, People's Republic of China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi214081, People's Republic of China
| |
Collapse
|
2
|
Villanueva-Gutiérrez E, Maldonado-Othón CA, Perez-Velazquez M, González-Félix ML. Activity and Partial Characterization of Trypsin, Chymotrypsin, and Lipase in the Digestive Tract of Totoaba macdonaldi. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1733157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | - Martin Perez-Velazquez
- Department of Scientific and Technological Research, University of Sonora, Hermosillo, Mexico
| | - Mayra L. González-Félix
- Department of Scientific and Technological Research, University of Sonora, Hermosillo, Mexico
| |
Collapse
|