1
|
McIvor AJ, Williams CT, Rich WA, Knochel AM, Burns NM, Berumen ML. Mark-recapture validates the use of photo-identification for the widely distributed blue-spotted ribbontail ray, Taeniura lymma. Sci Rep 2024; 14:17432. [PMID: 39075077 PMCID: PMC11286851 DOI: 10.1038/s41598-024-68302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The ability to identify individual animals can provide valuable insights into the behaviour, life history, survivorship, and demographics of wild populations. Photo-identification (photo-ID) uses unique natural markings to identify individuals and can be effective for scalable and non-invasive research on marine fauna. The successful application of photo-ID requires that chosen distinguishing markings are unique to individuals and persist over time. In this study, we validate the use of dorsal spot patterns for identifying individual blue-spotted ribbontail rays (Taeniura lymma) in conjunction with traditional tagging methods. Spot patterns were unique among T. lymma with 90.3% of individuals correctly identified using I3S photo-matching software from images taken up to 496 days apart. In comparison, traditional physical tagging methods showed a tag loss rate of 27% and a maximum tag retention period of only 356 days. Our findings demonstrate the effectiveness of photo-ID as a tool to monitor populations and better understand the ecology of the blue-spotted ribbontail ray without the need for physical tagging. The validation of photo-ID for this widespread species is important as it enables behavioural and demographic changes to be easily tracked in relation to coastal threats such as human development and habitat degradation.
Collapse
Affiliation(s)
- Ashlie J McIvor
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Department of Environmental Protection and Regeneration, Red Sea Global, Umluj, Saudi Arabia.
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal.
| | - Collin T Williams
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Walter A Rich
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna M Knochel
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Biological Sciences, Florida International University, Miami, USA
| | - Neil M Burns
- Department of Rural Economy, Environment and Society, Scotland's Rural College, Edinburgh, UK
| | - Michael L Berumen
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Citizen Science as a Tool to Get Baseline Ecological and Biological Data on Sharks and Rays in a Data-Poor Region. SUSTAINABILITY 2022. [DOI: 10.3390/su14116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Mexican Caribbean is in one of the regions with the greatest diversity of elasmobranchs in the world. However, the population status of most of the shark and ray species in this region is unknown. We used a citizen science program based on divers to collect data about the diversity, abundance, and distribution of elasmobranchs in this region. We visited dive centers in six locations and performed structured interviews with divemasters, instructors, and owners of the diving centers. In total, 79 divers were interviewed, of which 69% had more than five years’ experience diving in the Mexican Caribbean. Divers could identify 24 elasmobranch species for this region. Most of the divers (82%) reported a decrease in sightings of sharks and rays. Rays were the most frequently sighted species by divers (89%), and the spotted eagle ray (A. narinari) was the most common elasmobranch species reported in the region. Citizen science was a useful approach gathering for baseline information about sharks and rays in the Mexican Caribbean, increasing our knowledge of the abundance and distribution of some species in this region. Citizen science affords the opportunity to obtain long-term data that can be useful for management and conservation.
Collapse
|
3
|
Rangel BS, Viegas R, Bettcher VB, Garla RC. Eye healing in a free-ranging whitespotted eagle ray (Aetobatus narinari) following shark-inflicted bite injuries. JOURNAL OF FISH BIOLOGY 2022; 100:590-593. [PMID: 34817876 DOI: 10.1111/jfb.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Here we provide the first photographic records of the eye healing of a free-ranging whitespotted eagle ray (Aetobatus narinari) following shark-inflicted bite injuries on the cephalic region. The whitespotted eagle ray with fresh wounds on the cephalic region close to its right orbit, upper jaw and the anterior margin of its right pectoral fin was photographed on 19 July 2017 at the Fernando de Noronha Archipelago. Two subsequent photographs of the whitespotted eagle ray with a blind right eye were taken on 29 March 2018 and 18 April 2018. These records show the whitespotted eagle ray had the capacity to recover from the wounds, although they have led to the blindness of the eye. These findings also demonstrate this individual was able to survive for at least 9 months with a nonfunctional eye.
Collapse
Affiliation(s)
- Bianca S Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Viegas
- Centro de mergulho Mar de Noronha, Fernando de Noronha, Brazil
| | - Vanessa B Bettcher
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ictiologia Aplicada, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo C Garla
- Departamento de Botânica e Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Brewster LR, Cahill BV, Burton MN, Dougan C, Herr JS, Norton LI, McGuire SA, Pico M, Urban-Gedamke E, Bassos-Hull K, Tyminski JP, Hueter RE, Wetherbee BM, Shivji M, Burnie N, Ajemian MJ. First insights into the vertical habitat use of the whitespotted eagle ray Aetobatus narinari revealed by pop-up satellite archival tags. JOURNAL OF FISH BIOLOGY 2021; 98:89-101. [PMID: 32985701 DOI: 10.1111/jfb.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The whitespotted eagle ray Aetobatus narinari is a tropical to warm-temperate benthopelagic batoid that ranges widely throughout the western Atlantic Ocean. Despite conservation concerns for the species, its vertical habitat use and diving behaviour remain unknown. Patterns and drivers in the depth distribution of A. narinari were investigated at two separate locations, the western North Atlantic (Islands of Bermuda) and the eastern Gulf of Mexico (Sarasota, Florida, U.S.A.). Between 2010 and 2014, seven pop-up satellite archival tags were attached to A. narinari using three methods: a through-tail suture, an external tail-band and through-wing attachment. Retention time ranged from 0 to 180 days, with tags attached via the through-tail method retained longest. Tagged rays spent the majority of time (82.85 ± 12.17% S.D.) within the upper 10 m of the water column and, with one exception, no rays travelled deeper than ~26 m. One Bermuda ray recorded a maximum depth of 50.5 m, suggesting that these animals make excursions off the fore-reef slope of the Bermuda Platform. Individuals occupied deeper depths (7.42 ± 3.99 m S.D.) during the day versus night (4.90 ± 2.89 m S.D.), which may be explained by foraging and/or predator avoidance. Each individual experienced a significant difference in depth and temperature distributions over the diel cycle. There was evidence that mean hourly depth was best described by location and individual variation using a generalized additive mixed model approach. This is the first study to compare depth distributions of A. narinari from different locations and describe the thermal habitat for this species. Our study highlights the importance of region in describing A. narinari depth use, which may be relevant when developing management plans, whilst demonstrating that diel patterns appear to hold across individuals.
Collapse
Affiliation(s)
- Lauran R Brewster
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Brianna V Cahill
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Miranda N Burton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Cassady Dougan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Jeffrey S Herr
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Laura Issac Norton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Samantha A McGuire
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Marisa Pico
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Elizabeth Urban-Gedamke
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Kim Bassos-Hull
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, Florida, USA
| | - John P Tyminski
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, Florida, USA
| | - Robert E Hueter
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, Florida, USA
| | - Bradley M Wetherbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
- The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, Florida, USA
| | - Mahmood Shivji
- The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, Florida, USA
| | | | - Matthew J Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
5
|
Boggio-Pasqua A, Flam AL, Marshall AD. Spotting the "small eyes": using photo-ID methodology to study a wild population of smalleye stingrays ( Megatrygon microps) in southern Mozambique. PeerJ 2019; 7:e7110. [PMID: 31218135 PMCID: PMC6568249 DOI: 10.7717/peerj.7110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background The smalleye stingray (Megatrygon microps) is a large and rare dasyatid ray, patchily distributed across the Indo-West Pacific. Free-swimming individuals have regularly been recorded in Southern Mozambican coastal waters utilizing different inshore environments. Distinctive features of the species include latitudinal rows of white spots on the dorsal surface of their pectoral disc. Methods This study aimed to determine if the natural spot patterns on M. microps are sufficiently unique and stable to use in photo-identification studies of wild populations. Research dive logs were combined with opportunistic photographs from local dive centers and recreational divers to create a photographic database from the Inhambane Province coastline. Results Seventy different individuals were identified over a 15-year period, all exhibiting uniquely identifiable patterns. Stingrays were easily identifiable over a period of six years with multiple re-sightings of the same individuals recorded. Analysis of encounters across the Inhambane coastline revealed that individual rays regularly use inshore reefs along a 350 km stretch of coastline. Fifteen stingrays were re-sighted during the study period, including one showing a 400 km return movement between Tofo Beach and the Bazaruto Archipelago, which is the longest distance traveled by a dasyatid ray on record. Several presumably pregnant females have also been recorded in the Bazaruto Archipelago National Park.
Collapse
Affiliation(s)
- Atlantine Boggio-Pasqua
- Marine Megafauna Association, Tofo Beach, Inhambane, Mozambique.,AgroParisTech, Paris, France
| | - Anna L Flam
- Marine Megafauna Association, Tofo Beach, Inhambane, Mozambique
| | | |
Collapse
|
6
|
Sloman KA, Bouyoucos IA, Brooks EJ, Sneddon LU. Ethical considerations in fish research. JOURNAL OF FISH BIOLOGY 2019; 94:556-577. [PMID: 30838660 DOI: 10.1111/jfb.13946] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Edward J Brooks
- Cape Eleuthera Island School, Rock Sound, Eleuthera, The Bahamas
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|