1
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
2
|
Rheinsmith SE, Quinn TP, Dittman AH, Yopak KE. Ontogenetic shifts in olfactory rosette morphology of the sockeye salmon, Oncorhynchus nerka. J Morphol 2023; 284:e21539. [PMID: 36433755 PMCID: PMC10107999 DOI: 10.1002/jmor.21539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/28/2022]
Abstract
Sockeye salmon, Oncorhynchus nerka, are anadromous, semelparous fish that breed in freshwater-typically in streams, and juveniles in most populations feed in lakes for 1 or 2 years, then migrate to sea to feed for 2 or 3 additional years, before returning to their natal sites to spawn and die. This species undergoes important changes in behavior, habitat, and morphology through these multiple life history stages. However, the sensory systems that mediate these migratory patterns are not fully understood, and few studies have explored changes in sensory function and specialization throughout ontogeny. This study investigates changes in the olfactory rosette of sockeye salmon across four different life stages (fry, parr, smolt, and adult). Development of the olfactory rosette was assessed by comparing total rosette size (RS), lamellae number, and lamellae complexity from scanning electron microscopy images across life stages, as a proxy for olfactory capacity. Olfactory RS increased linearly with lamellae number and body size (p < .001). The complexity of the rosette, including the distribution of sensory and nonsensory epithelia and the appearance of secondary lamellar folding, varied between fry and adult life stages. These differences in epithelial structure may indicate variation in odor-processing capacity between juveniles imprinting on their natal stream and adults using those odor memories in the final stages of homing to natal breeding sites. These findings improve our understanding of the development of the olfactory system throughout life in this species, highlighting that ontogenetic shifts in behavior and habitat may coincide with shifts in nervous system development.
Collapse
Affiliation(s)
- Sarah E Rheinsmith
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
3
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
4
|
Konishi J, Abe T, Ogihara A, Adachi D, Denboh T, Kudo H. Olfactory behavioural and neural responses of planktivorous lacustrine sockeye salmon (Oncorhynchus nerka) to prey odours. JOURNAL OF FISH BIOLOGY 2022; 101:269-275. [PMID: 35596740 DOI: 10.1111/jfb.15110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Fish use a variety of sensory systems when foraging. Salmonids are generally considered visual feeders. However, some species feed on zooplanktons under dark conditions, suggesting they also detect prey using nonvisual cues. Under experimental conditions, hatchery-reared rainbow trout (Oncorhynchus mykiss) have been shown to use olfaction when searching for food pellets, but olfactory foraging has not been documented in wild salmonids. In the present study, to examine their behavioural response and neural activity in the olfactory nervous system using c-fos expression as a neural molecular marker, immature wild-caught lacustrine sockeye salmon (Oncorhynchus nerka) in a flow-through aquarium were exposed to zooplanktons (Daphnia spp.) extract including zooplanktons odorant and to dimethyl sulfide. The salmon exposed to zooplanktons odour increased their total swimming distance and time, numbers of turns and ascents, and c-fos expression in the olfactory bulb, suggesting that they can detect zooplanktons extract to locate prey in the laboratory experiments. However, no response was seen in those exposed to dimethyl sulfide. The results of this study suggest that prey odour may serve as a chemosensory cue for wild immature salmonids.
Collapse
Affiliation(s)
| | | | - Atsushi Ogihara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Daisuke Adachi
- Toya Lake Station, Field Science Center for Northern Biosphere, Hokkaido University, Toyako, Japan
| | - Takashi Denboh
- Toya Lake Station, Field Science Center for Northern Biosphere, Hokkaido University, Toyako, Japan
| | - Hideaki Kudo
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
5
|
Garlov PE, Kuzik VV. The Involvement and Functional Role of the Fish Nonapeptidergic Preoptico-Hypophysial Neurosecretory System in Spawning Migrations. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nakamichi R, Kitada S, Kishino H. Exploratory analysis of multi-trait coadaptations in light of population history. Ecol Evol 2022; 12:e8755. [PMID: 35342584 PMCID: PMC8933610 DOI: 10.1002/ece3.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
During the process of range expansion, populations encounter a variety of environments. They respond to the local environments by modifying their mutually interacting traits. Common approaches of landscape analysis include first focusing on the genes that undergo diversifying selection or directional selection in response to environmental variation. To understand the whole history of populations, it is ideal to capture the history of their range expansion with reference to the series of surrounding environments and to infer the multitrait coadaptation. To this end, we propose a complementary approach; it is an exploratory analysis using up-to-date methods that integrate population genetic features and features of selection on multiple traits. First, we conduct correspondence analysis of site frequency spectra, traits, and environments with auxiliary information of population-specific fixation index (F ST). This visualizes the structure and the ages of populations and helps infer the history of range expansion, encountered environmental changes, and selection on multiple traits. Next, we further investigate the inferred history using an admixture graph that describes the population split and admixture. Finally, principal component analysis of the selection on edge-by-trait (SET) matrix identifies multitrait coadaptation and the associated edges of the admixture graph. We introduce a newly defined factor loadings of environmental variables in order to identify the environmental factors that caused the coadaptation. A numerical simulation of one-dimensional stepping-stone population expansion showed that the exploratory analysis reconstructed the pattern of the environmental selection that was missed by analysis of individual traits. Analysis of a public dataset of natural populations of black cottonwood in northwestern America identified the first principal component (PC) coadaptation of photosynthesis- vs growth-related traits responding to the geographical clines of temperature and day length. The second PC coadaptation of volume-related traits suggested that soil condition was a limiting factor for aboveground environmental selection.
Collapse
Affiliation(s)
| | - Shuichi Kitada
- Tokyo University of Marine Science and TechnologyTokyoJapan
| | - Hirohisa Kishino
- Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
- The Research Institute of Evolutionary BiologyTokyoJapan
- AI/Data Science Social Implementation LaboratoryChuo UniversityTokyoJapan
| |
Collapse
|
7
|
Kitada S, Kishino H. Population structure of chum salmon and selection on the markers collected for stock identification. Ecol Evol 2021; 11:13972-13985. [PMID: 34707832 PMCID: PMC8525185 DOI: 10.1002/ece3.8102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Genetic stock identification (GSI) is a major management tool of Pacific salmon (Oncorhynchus Spp.) that has provided rich genetic baseline data of allozymes, microsatellites, and single-nucleotide polymorphisms (SNPs) across the Pacific Rim. Here, we analyzed published data sets for adult chum salmon (Oncorhynchus keta), namely 10 microsatellites, 53 SNPs, and a mitochondrial DNA locus (mtDNA3, control region, and NADH-3 combined) in samples from 495 locations in the same distribution range (n = 61,813). TreeMix analysis of the microsatellite loci identified the greatest convergence toward Japanese/Korean populations and suggested two admixture events from Japan/Korea to Russia and the Alaskan Peninsula. The SNPs had been purposively collected from rapidly evolving genes to increase the power of GSI. The largest expected heterozygosity was observed in Japanese/Korean populations for microsatellites, whereas it was largest in Western Alaskan populations for SNPs, reflecting the SNP discovery process. A regression of SNP population structures on those of microsatellites indicated the selection of the SNP loci according to deviations from the predicted structures. Specifically, we matched the sampling locations of the SNPs with those of the microsatellites and performed regression analyses of SNP allele frequencies on a 2-dimensional scaling (MDS) of matched locations obtained from microsatellite pairwise F ST values. The MDS first axis indicated a latitudinal cline in American and Russian populations, whereas the second axis showed differentiation of Japanese/Korean populations. The top five outlier SNPs included mtDNA3, U502241 (unknown), GnRH373, ras1362, and TCP178, which were identified by principal component analysis. We summarized the functions of 53 nuclear genes surrounding SNPs and the mtDNA3 locus by referring to a gene database system and propose how they may influence the fitness of chum salmon.
Collapse
Affiliation(s)
- Shuichi Kitada
- Tokyo University of Marine Science and TechnologyTokyoJapan
| | - Hirohisa Kishino
- Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
- Present address:
The Research Institute of Evolutionary BiologyTokyoJapan
| |
Collapse
|
8
|
Triana-Garcia PA, Nevitt GA, Pesavento JB, Teh SJ. Gross morphology, histology, and ultrastructure of the olfactory rosette of a critically endangered indicator species, the Delta Smelt, Hypomesus transpacificus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:597-616. [PMID: 34156533 PMCID: PMC8408092 DOI: 10.1007/s00359-021-01500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
The Delta Smelt (Hypomesus transpacificus) is a small, semi-anadromous fish native to the San Francisco Bay-Delta Estuary and has been declared as critically endangered. Their olfactory biology, in particular, is poorly understood and a basic description of their sensory anatomy is needed to advance our understanding of the sensory ecology of species to inform conservation efforts to manage and protect them. We provide a description of the gross morphology, histological, immunohistochemical, and ultrastructural features of the olfactory rosette in this fish and discuss some of the functional implications in relation to olfactory ability. We show that Delta Smelt have a multilamellar olfactory rosette with allometric growth. Calretinin immunohistochemistry revealed a diffuse distribution of olfactory receptor neurons within the epithelium. Ciliated, microvillous and crypt neurons were clearly identified using morphological and immunohistochemical features. The olfactory neurons were supported by robust ciliated and secretory sustentacular cells. Although the sense of smell has been overlooked in Delta Smelt, we conclude that the olfactory epithelium has many characteristics of macrosmatic fish. With this study, we provide a foundation for future research into the sensory ecology of this imperiled fish.
Collapse
Affiliation(s)
- Pedro Alejandro Triana-Garcia
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA. .,Grupo de Investigación en Sanidad de Organismos Acuáticos, Instituto de Acuicultura de Los Llanos, Universidad de Los Llanos, Villavicencio, Meta, Colombia.
| | - Gabrielle A Nevitt
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Joseph B Pesavento
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Swee J Teh
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Birnie-Gauvin K, Bordeleau X, Cooke SJ, Davidsen JG, Eldøy SH, Eliason EJ, Moore A, Aarestrup K. Life-history strategies in salmonids: the role of physiology and its consequences. Biol Rev Camb Philos Soc 2021; 96:2304-2320. [PMID: 34043292 DOI: 10.1111/brv.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023]
Abstract
Salmonids are some of the most widely studied species of fish worldwide. They span freshwater rivers and lakes to fjords and oceans; they include short- and long-distance anadromous migrants, as well as partially migratory and non-migratory populations; and exhibit both semelparous and iteroparous reproduction. Salmonid life-history strategies represent some of the most diverse on the planet. For this reason, salmonids provide an especially interesting model to study the drivers of these different life-history pathways. Over the past few decades, numerous studies and reviews have been published, although most have focused on ultimate considerations where expected reproductive success of different developmental or life-history strategies are compared. Those that considered proximate causes generally focused on genetics or the environment, with less consideration of physiology. Our objective was therefore to review the existing literature on the role of physiology as a proximate driver for life-history strategies in salmonids. This link is necessary to explore since physiology is at the core of biological processes influencing energy acquisition and allocation. Energy acquisition and allocation processes, in turn, can affect life histories. We find that life-history strategies are driven by a range of physiological processes, ranging from metabolism and nutritional status to endocrinology. Our review revealed that the role of these physiological processes can vary across species and individuals depending on the life-history decision(s) to be made. In addition, while findings sometimes vary by species, results appear to be consistent in species with similar life cycles. We conclude that despite much work having been conducted on the topic, the study of physiology and its role in determining life-history strategies in salmonids remains somewhat unexplored, particularly for char and trout (excluding brown trout) species. Understanding these mechanistic links is necessary if we are to understand adequately how changing environments will impact salmonid populations.
Collapse
Affiliation(s)
- Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, Silkeborg, 8600, Denmark
| | - Xavier Bordeleau
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, 850 route de la Mer, Mont-Joli, QC, G5H 3Z4, Canada
| | - Steven J Cooke
- Department of Biology & Institute of Environmental and Interdisciplinary Sciences, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Jan G Davidsen
- NTNU University Museum, Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491, Norway
| | - Sindre H Eldøy
- NTNU University Museum, Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491, Norway
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, California, UCSB Marine Science Institute, Building 520, Santa Barbara, CA, 93106-6150, U.S.A
| | - Andy Moore
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, U.K
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, Silkeborg, 8600, Denmark
| |
Collapse
|
10
|
Jonsson B, Jonsson N. Continuous outmigration and sequential encountering of environmental cues are important for successful homing of hatchery-reared, anadromous brown trout Salmo trutta. JOURNAL OF FISH BIOLOGY 2021; 98:1481-1484. [PMID: 33439494 DOI: 10.1111/jfb.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
When rehabilitating and reintroducing trout Salmo trutta in rivers, it is a goal that as many as possible survive, home and form self-sustaining populations. Hatchery-reared, anadromous S. trutta have significant lower ability to return to the area where they were raised if (a) transported in a closed tank to sea and released 5 km from the River Imsa, relative to those that were (b) transported when swimming in a partly submerged tank with sea water run-through, while being slowly towed by a boat the same distance or (c) released at the outlet of the River Imsa. Thus, if deprived from environmental cues during part of the way, they lose their ability to home.
Collapse
Affiliation(s)
- Bror Jonsson
- Norwegian Institute for Nature Research, Oslo, Norway
| | - Nina Jonsson
- Norwegian Institute for Nature Research, Oslo, Norway
| |
Collapse
|
11
|
Gerlach G, Wullimann MF. Neural pathways of olfactory kin imprinting and kin recognition in zebrafish. Cell Tissue Res 2021; 383:273-287. [PMID: 33515290 PMCID: PMC7873017 DOI: 10.1007/s00441-020-03378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Teleost fish exhibit extraordinary cognitive skills that are comparable to those of mammals and birds. Kin recognition based on olfactory and visual imprinting requires neuronal circuits that were assumed to be necessarily dependent on the interaction of mammalian amygdala, hippocampus, and isocortex, the latter being a structure that teleost fish are lacking. We show that teleosts—beyond having a hippocampus and pallial amygdala homolog—also have subpallial amygdalar structures. In particular, we identify the medial amygdala and neural olfactory central circuits related to kin imprinting and kin recognition corresponding to an accessory olfactory system despite the absence of a separate vomeronasal organ.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl-von-Ossietzky University, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD, 4811, Townsville, Australia
| | - Mario F Wullimann
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152, Planegg-Martinsried, Germany. .,Max-Planck-Institute for Neurobiology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Kato-Unoki Y, Umemura K, Tashiro K. Fingerprinting of hatchery haplotypes and acquisition of genetic information by whole-mitogenome sequencing of masu salmon, Oncorhynchus masou masou, in the Kase River system, Japan. PLoS One 2020; 15:e0240823. [PMID: 33147284 PMCID: PMC7641346 DOI: 10.1371/journal.pone.0240823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Stocking hatchery fish can lead to disturbance and extinction of the local indigenous population. Masu salmon Oncorhynchus masou masou, which is endemic across Japan, is a commonly stocked fish for recreational fishing in Japan. To conserve the indigenous resource, their genetic information is required, however, especially on Kyushu Island, the paucity of genetic information for this species has hindered proper resource management. Here, to identify hatchery mitogenome haplotypes of this species, stocked in the Kase River system, Kyushu Island, Japan, and to provide mitogenomic information for the resource management of this species, we analyzed the whole-mitogenome of masu salmon in this river system and several hatcheries potentially used for stocking. Whole-mitogenome sequencing clearly identified hatchery haplotypes, like fingerprints: among the 21 whole-mitogenome haplotypes obtained, six were determined to be hatchery haplotypes. These hatchery haplotypes were distributed in 13 out of 17 sites, suggesting that informal stocking of O. m. masou has been performed widely across this river system. The population of no hatchery haplotypes mainly belonged to clade I, a clade not found in Hokkaido Island in previous studies. Sites without hatchery haplotypes, and the non-hatchery haplotypes in clade I might be candidates for conservation as putative indigenous resources. The whole-mitogenome haplotype analysis also clarified that the same reared strain was used in multiple hatcheries. Analysis of molecular variance suggested that stocked hatchery haplotypes reduce the genetic variation among populations in this river system. It will be necessary to pay attention to genetic fluctuations so that the resources of this river system will not deteriorate further. The single nucleotide polymorphism data obtained here could be used for resource management in this and other rivers: e.g., for monitoring of informal stocking and stocked hatchery fishes, and/or putative indigenous resources.
Collapse
Affiliation(s)
- Yoko Kato-Unoki
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Keitaro Umemura
- Fishery Research Laboratory, Kyushu University, Fukuoka, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|