1
|
Aravena-Canales D, Valenzuela-Muñoz V, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout ( Oncorhynchus mykiss) Skeletal Muscle. Int J Mol Sci 2024; 25:7586. [PMID: 39062828 PMCID: PMC11276852 DOI: 10.3390/ijms25147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| |
Collapse
|
2
|
Shen J, Jiang Q, Zhang W, Xu Y, Xia W. Assessment of gelatinolytic proteinases in chilled grass carp (Ctenopharyngodon idellus) fillets: characterization and contribution to texture softening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1919-1926. [PMID: 34514605 DOI: 10.1002/jsfa.11529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Texture softening is always a problem during chilling of grass carp fillets. To solve this problem and provide for better quality of flesh, understanding the mechanism of softening is necessary. Gelatinolytic proteinases are suspected to play an essential role in the disintegration of collagen in softening of fish flesh. In the present study, the types and contribution of gelatinolytic proteinases in chilled fillets were investigated. RESULTS Four active bands (G1, 250 kDa; G2, 68 kDa; G3, 66 kDa; G4, 29 kDa) of gelatinolytic proteinases were identified in grass carp fillets by gelatin zymography. The effect of inhibitors and metal ions revealed that G1 was possibly a serine proteinase, G2 and G3 were calcium-dependent metalloproteinases and G4 was a cysteine proteinase. The effect of the inhibitors phenylmethanesulfonyl fluoride (PMSF), l-3-carboxy-trans-2,3-epoxy-propionyl-l-leucine-4-guanidinobutylamide (E-64) and 1,10-phenanthroline (Phen) on chilled fillets revealed that gelatinolytic proteinase activities were significantly suppressed. Collagen solubility indicated that metalloproteinase and serine proteinase played critical roles in collagen breakdown during the first 3 days, and cysteine proteinase revealed its effect after 3 days. Meanwhile, during chilled storage for 11 days, the final values of shear force increased 19.68% and 24.33% in PMSF and E-64 treatments when compared to control fillets respectively, whereas the increase after Phen treatment was 49.89%. CONCLUSION Our study concluded that the disintegration of collagen in post-mortem softening of grass carp fillets was mainly mediated by metalloproteinase and to a lesser extent by serine proteinase and cysteine proteinase. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiandong Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wei Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|