Anumukonda K, Francis M, Currie P, Tulenko F, Hsu E. Heavy chain-only antibody genes in fish evolved to generate unique CDR3 repertoire.
Eur J Immunol 2021;
52:247-260. [PMID:
34708869 DOI:
10.1002/eji.202149588]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
In addition to conventional immunoglobulin, camelids and cartilaginous fish express a special class of antibody that consists only of heavy (H) chain (HCAbs). In the holocephalan elephantfish, there are two HCAb classes, one of which has evolved surprising features. The H-chain genes in cartilaginous fish are organized as 20-200 minigenes, or clusters, each consisting of VH, 1-3 DH, JH gene segments with one set of constant region exons. We report that HHC2 (holocephalan H-chain antibody 2) evolved from IgM H-chain clusters, but its DH gene segments have diverged considerably. The three DH in HHC2 clusters are A-rich, so that one to three potential reading frames for each DH encode lysine and arginine. All three are incorporated into the rearranged VDJ, ensuring that the ligand-binding site carries multiple basic residues, as cDNA sequences demonstrate. The electropositive character in HHC2 CDR3 is accompanied by a paucity of aromatic amino acids, the latter feature at variance to the established, interactive role of tyrosine not only in ligand-binding but generally at interfaces of protein complexes. The selection for these divergent HHC2 features challenges currently accepted ideas on what determines antibody reactivity and molecular recognition.
Collapse