1
|
Wang J, Han S, Zhang J, Luo Y, Wang Y, Chen L. Establishment and characterization of a gill cell line from Takifugu obscurus and transcriptome analysis of its gene expression profiles upon low temperature. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109843. [PMID: 39181522 DOI: 10.1016/j.fsi.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Takifugu obscurus is a farmed fish of great economic importance in China. The rapid development of T. obscurus aquaculture industry has been accompanied by disease and low-temperature stress, resulting in huge economic losses. Cell lines are used extensively in teleost physiology and pathology as the most cost-effective platform for in vitro research. A novel gill cell line of T. obscurus (named TOG) was first successfully established, and passed through 52 generations. The optimal conditions for TOG growth were 20 % FBS concentration and 24 °C, TOG could be grown in both hypotonic (150 mOsmol-kg-1) and hypertonic (600 mOsmol-kg-1) environments. TOG was determined to be derived from T. obscurus by sequencing the mitochondrial COI gene. Karyotype analysis revealed that the chromosome number of TOG was 44 (2n = 44). Transfection experiment showed that TOG was able to express foreign genes. Furthermore, several immune-related genes were significantly up-regulated in TOG after LPS and poly (I:C) stimulation, including tlr3, isg15, il1β and il10. Additionally, transcriptome analysis of TOG under low-temperature stress (24 °C, 18 °C, 12 °C, 10 °C and 8 °C) found that differentially expressed genes (DEGs) were significantly clustered in several immunological and energy metabolic pathways, and cold stress could disrupt the immune barrier and reduce immunity by downregulating the immune-related pathways. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that bule module and turquoise module, which were closely correlated with low temperature and the degree of fish damage, were both predominantly found in PPAR, NOD-like receptor and Toll-like receptor signaling pathway. Hub genes were identified in these two modules, including mre11, clpb, dhx15, ddx18 and utp15. TOG cell line will become an effective experimental platform for genetic and immunological research, and our results would help us gain a deeper insight into the molecular mechanism of cold tolerance in teleost.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuang Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jingping Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yuhao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Mohamad A, Khemthong M, Trongwongsa P, Lertwanakarn T, Setthawong P, Surachetpong W. A New Cell Line from the Brain of Red Hybrid Tilapia ( Oreochromis spp.) for Tilapia Lake Virus Propagation. Animals (Basel) 2024; 14:1522. [PMID: 38891569 PMCID: PMC11171066 DOI: 10.3390/ani14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Tilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia (Oreochromis spp.). In this study, we successfully established a new cell line, RHTiB, from the red hybrid tilapia brain. RHTiB cells were cultured for 1.5 years through over 50 passages and demonstrated optimal growth at 25 °C in Leibovitz-15 medium supplemented with 10% fetal bovine serum at pH 7.4. Morphologically, RHTiB cells displayed a fibroblast-like appearance, and cytochrome oxidase I gene sequencing confirmed their origin from Oreochromis spp. Mycoplasma contamination testing yielded negative results. The revival rate of the cells post-cryopreservation was observed to be between 75 and 80% after 30 days. Chromosomal analysis at the 25th passage revealed a diploid count of 22 pairs (2n = 44). While no visible cytopathic effects were observed, both immunofluorescence microscopy and RT-qPCR analysis demonstrated successful TiLV propagation in the RHTiB cell line, with a maximum TiLV concentration of 107.82 ± 0.22 viral copies/400 ng cDNA after 9 days of incubation. The establishment of this species-specific cell line represents a valuable advancement in the diagnostic and isolation tools for viral diseases potentially impacting red hybrid tilapia.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Liu Z, Ma Y, Hao L. Characterization of three novel cell lines derived from the brain of spotted sea bass: Focusing on cell markers and susceptibility toward iridoviruses. FISH & SHELLFISH IMMUNOLOGY 2022; 130:175-185. [PMID: 36028055 DOI: 10.1016/j.fsi.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Despite tens of cell lines originating from fish brain tissue have been constructed, little is known about the definite cell types they belong to. Whether fish cell lines derived from the brain shares similar characteristics is not well-answered yet. Here, we constructed three cell lines designated as LMB-S, LMB-M, LMB-L using brain tissue of spotted sea bass (Lateolabrax maculatus). Among them, LMB-L was identified as astroglia-like cells considering the high expression of GFAP, DCX, PTX, S100b, which are regarded as astrocyte-specific or astrocyte-associated cell markers. LMB-M exhibited smooth muscle-like features showing strong expression of LMOD1, SLAMP, M-cadherin, MGP, which are confirmed as muscle-restricted or myogenesis-involved cell markers. Although LMB-S was not definitely identified, it appeared an activation of WNT/β-catenin pathway. Besides the distinct expression profiles of cell markers, the three cell lines also presented differences in transfection efficiency and susceptibility to iridovirus infection. Relying on the established cell lines, a novel megalocytivirus, named LMIV (Lateolabrax maculatus iridovirus), was first isolated from diseased spotted sea bass. Genetic analysis of major capsid protein (MCP) and adenosine triphosphatase (ATPase) manifested that LMIV was clearly distinguishable from other representative teleost iridoviruses. Further investigations revealed that LMIV could replicate most efficiently in LMB-L cells obtaining the highest viral load (2.16 × 1010 copy/mL). By contrast, LMB-S cells gave rise to the highest viral load up to 3.86 × 108 copy/mL, when the three cell lines were infected with MRV, a newly emerged ranavirus. Moreover, LMIV infection caused lots of cells to be detached from monolayers, generating adherent and non-adherent cells. An opposite expression profiling of type I IFN pathway-related genes (JAK1, STAT1, STAT2, IRF9, Mx1) was found between adherent and non-adherent cells. Combined with the analysis of MCP gene expression, it is speculated that inhibiting type I IFN pathway in non-adherent cells allowed the facilitation of virus duplication. Taken together, the present study broadens our understanding about the diversity of cell lines derived from fish brain tissue and screening cells more susceptible to virus is not only meaningful for the development of vaccine, but also provide clues for further clarification of cell-iridovirus interactions.
Collapse
Affiliation(s)
- Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China.
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China
| |
Collapse
|
4
|
Liu R, Liu R, Song G, Li Q, Cui Z, Long Y. Mitochondria Dysfunction and Cell Apoptosis Limit Resistance of Nile Tilapia (Oreochromis niloticus) to Lethal Cold Stress. Animals (Basel) 2022; 12:ani12182382. [PMID: 36139242 PMCID: PMC9495169 DOI: 10.3390/ani12182382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sensitivity of Nile tilapia (Oreochromis niloticus) to cold stress represents a major concern for both aquaculture and theoretical study; however, the cellular and molecular mechanisms determining cold susceptibility of it remain largely unknown. In this study, we first estimated the median survival time of juvenile Nile tilapia under exposure to lethal cold stress (12 °C). The fish were classified as cold-sensitive or cold-tolerant based on their behavioral manifestation after exposed to 12 °C for 3 days. Subsequently, histological, biochemical and gene expression analyses were performed for the fish with different cold resistance to explore the cellular and molecular events underlying cold susceptibility of Nile tilapia. We found that exposure of Nile tilapia to lethal cold stress caused systemic tissue structure changes, mitochondrial swelling and dysfunction, induction of apoptosis and endoplasmic reticulum (ER) stress-related genes and cell apoptosis. The extent of these adverse cellular and molecular events determines an individual’s ability to survive cold stress. Our data indicate that mitochondria dysfunction and mitochondria-mediated cell apoptosis are the main factors limiting Nile tilapia’s cold resistance. Abstract Inability of Nile tilapia (Oreochromis niloticus) to withstand cold stress represents a major economic concern, which restricts the culture area, limits the growing period and even results in mass mortality in cold seasons. However, the cellular and molecular mechanisms determining cold susceptibility of Nile tilapia remain largely unknown. In this study, we characterized the ability of juvenile Nile tilapia to survive lethal cold stress (12 °C) and the median survival time (LT50) of the experimental fish under exposure to 12 °C cold stress was estimated as 3.14 d. After being exposed to 12 °C for 3 d, the survivors that lost equilibrium (LE) and those that swam normally (NO) were regarded as cold-sensitive and cold-tolerant, respectively. The untreated (Ctrl), NO and LE fish were subjected to histological, biochemical and gene expression analyses to explore the cellular and molecular events underlying cold susceptibility of Nile tilapia. Exposure of Nile tilapia to lethal cold stress caused systemic tissue structure changes, mitochondrial swelling and dysfunction, induction of apoptosis and endoplasmic reticulum (ER) stress-related genes and cell apoptosis. The extent of these adverse cellular and molecular events determines an individual’s ability to survive cold stress. Our data indicate that mitochondria dysfunction and mitochondria-mediated cell apoptosis are the main factors limiting Nile tilapia’s cold resistance.
Collapse
Affiliation(s)
- Ran Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Renyan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: ; Tel.: +86-27-68780100
| |
Collapse
|
5
|
Chu PY, Li JX, Hsu TH, Gong HY, Lin CY, Wang JH, Huang CW. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia ( Oreochromis spp.) via Transcriptome Analysis. Animals (Basel) 2021; 11:3538. [PMID: 34944312 PMCID: PMC8697892 DOI: 10.3390/ani11123538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Taiwan tilapia is one of the primary species used in aquaculture practices in Taiwan. However, as a tropical fish, it is sensitive to cold temperatures that can lead to high mortality rates during winter months. Genetic and broodstock management strategies using marker-assisted selection and breeding are the best tools currently available to improve seed varieties for tilapia species. The purpose of this study was to develop molecular markers for cold stress-related genes using digital gene expression analysis of next-generation transcriptome sequencing in Taiwan tilapia (Oreochromis spp.). We constructed and sequenced cDNA libraries from the brain, gill, liver, and muscle tissues of cold-tolerance (CT) and cold-sensitivity (CS) strains. Approximately 35,214,833,100 nucleotides of raw sequencing reads were generated, and these were assembled into 128,147 unigenes possessing a total length of 185,382,926 bp and an average length of 1446 bp. A total of 25,844 unigenes were annotated using five protein databases and Venny analysis, and 38,377 simple sequence repeats (SSRs) and 65,527 single nucleotide polymorphisms (SNPs) were identified. Furthermore, from the 38-cold tolerance-related genes that were identified using differential gene expression analysis in the four tissues, 13 microsatellites and 37 single nucleotide polymorphism markers were identified. The results of the genotype analysis revealed that the selected markers could be used for population genetics. In addition to the diversity assessment, one of the SNP markers was determined to be significantly related to cold-tolerance traits and could be used as a molecular marker to assist in the selection and verification of cold-tolerant populations. The specific genetic markers explored in this study can be used for the identification of genetic polymorphisms and cold tolerance traits in Taiwan tilapia, and they can also be used to further explore the physiological and biochemical molecular regulation pathways of fish that are involved in their tolerance to environmental temperature stress.
Collapse
Affiliation(s)
- Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Jia-Xian Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan;
| | - Jung-Hua Wang
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- AI Research Center, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
6
|
Characterization of Biological Pathways Regulating Acute Cold Resistance of Zebrafish. Int J Mol Sci 2021; 22:ijms22063028. [PMID: 33809683 PMCID: PMC8001686 DOI: 10.3390/ijms22063028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Low temperature stress represents a major threat to the lives of both farmed and wild fish species. However, biological pathways determining the development of cold resistance in fish remain largely unknown. Zebrafish larvae at 96 hpf were exposed to lethal cold stress (10 °C) for different time periods to evaluate the adverse effects at organism, tissue and cell levels. Time series RNA sequencing (RNA-seq) experiments were performed to delineate the transcriptomic landscape of zebrafish larvae under cold stress and during the subsequent rewarming phase. The genes regulated by cold stress were characterized by progressively enhanced or decreased expression, whereas the genes associated with rewarming were characterized by rapid upregulation upon return to normal temperature (28 °C). Genes such as trib3, dusp5 and otud1 were identified as the representative molecular markers of cold-induced damages through network analysis. Biological pathways involved in cold stress responses were mined from the transcriptomic data and their functions in regulating cold resistance were validated using specific inhibitors. The autophagy, FoxO and MAPK (mitogen-activated protein kinase) signaling pathways were revealed to be survival pathways for enhancing cold resistance, while apoptosis and necroptosis were the death pathways responsible for cold-induced mortality. Functional mechanisms of the survival-enhancing factors Foxo1, ERK (extracellular signal-regulated kinase) and p38 MAPK were further characterized by inhibiting their activities upon cold stress and analyzing gene expression though RNA-seq. These factors were demonstrated to determine the cold resistance of zebrafish through regulating apoptosis and p53 signaling pathway. These findings have provided novel insights into the stress responses elicited by lethal cold and shed new light on the molecular mechanisms underlying cold resistance of fish.
Collapse
|