1
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
2
|
Mustapha UF, Zhi F, Huang YQ, Assan D, Li GL, Jiang DN. First account of a transient intersex in spotted scat, Scatophagus argus: a marine gonochoristic fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1011-1023. [PMID: 35804212 DOI: 10.1007/s10695-022-01097-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This study presents the first incidence of intersex associated with testis-ova in spotted scat (Scatophagus argus) reared in a controlled environment. The testis-ova is associated with the abnormal occurrence of primary oocytes (POs) in some male testis and is referred to as ectopic primary oocytes (Ecto-PO), whiles individuals with Ecto-PO are called "Ecto-PO gonad/individuals." We investigated gonads of 129 male spotted scat aged 4-12 and 18 months after hatch (mah) by histological studies for the presence of female sexual characteristics. A total of 20 out of 88 gonads representing 22.7% of male fish aged 6-12, or 15.5% of all male fish sampled, were found to have visible Ecto-PO. At least, the Ecto-PO had an average of 7 oocytes per gonadal section, indicating high severity. The Ecto-PO appears after sex differentiation and degenerates during sexual maturation. The Ecto-PO did not significantly influence the expression pattern of male and female sex-related genes performed using qPCR. Immunofluorescence of 42sp50 specifically stained the Ecto-PO without influence from the surrounding testicular tissues. In addition, temperature did not correlate with the proliferation of the Ecto-PO, but rather gonad developmental strategy. The results show that the naturally occurring Ecto-PO might not be detrimental to testis development and could be considered a frequent-high-level incidence of natural aberration. This study highlights the intricacy of fish sex differentiation and provides a new research chapter to ascertain the mystery behind the occurrence of Ecto-PO.
Collapse
Affiliation(s)
- Umar Farouk Mustapha
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Fei Zhi
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Yuang-Qing Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Daniel Assan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Guang-Li Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Dong-Neng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China.
| |
Collapse
|