1
|
Xiong W, Jiang GZ, He CF, Hua HK, Du MT, Huang WT, Xu HT, Zhou MT, Wang X, Guo HX, Wang AM, Sun SZ, Liu WB. Recombinant Bacillus subtilis expressing functional peptide and its effect on blunt snout bream (Megalobrama amblycephala) in two state of stress. FISH & SHELLFISH IMMUNOLOGY 2024:109980. [PMID: 39461393 DOI: 10.1016/j.fsi.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
This study was conducted to investigate the effects of recombinant Bacillus subtilis CM66-P4' (secreting P4, which related to previous research in this laboratory) on the antioxidant capacity and immune function of blunt snout bream (Megalobrama amblycephala) through in vitro and in vivo experiment. The culture experiment was divided into 3 groups, including control group (CG, with no additional bacteria), original bacteria group (OBG, with 2×109 CFU/kg Bacillus subtilis CM66) and recombinant bacteria group (RBG, with 2×109 CFU/kg Bacillus subtilis CM66-P4'). After 8 weeks of feeding, a part of the fish were subjected to fishing stress, and the rest were subjected to starvation stress test. Blood samples were collected for the determination of immune and stress-related indexes. The hepatocytes were divided into control group (CG) and experiment group with P4 peptide (LTG and HTG). The cells were collected after starvation treatment and the expression of related genes was detected. The results showed as follows: compared with the CG group, the gene expressions of hepatocytic hsp60 and hsp70 in the LTG and HTG groups were significantly suppressed after 24 h starvation stress (P < 0.05). The content of MDA, the activities of AKP and ALT in OBG group were significantly changed after 30 days starvation (P < 0.05), while the indexes in RBG group had no significant change. The changes of plasma cortisol, malondialdehyde (MDA) and Immunoglobulin M (IgM) in CG and OBG groups were significantly changed at 4 h after fishing stress (P < 0.05), while the indexes in RBG group was not. In conclusion, this study confirmed that Bacillus subtilis CM66-P4' has great potential in preventing adverse effects of stress on aquatic livestock.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Hao-Kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Mian-Ting Du
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Wan-Ting Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Hui-Ting Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Mei-Ting Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Ai-Min Wang
- Yancheng Inst Technol, Coll Econ, Key Lab Aquaculture & Ecol Coastal Pool Jiangsu P, Yancheng, Peoples R China
| | - Shang-Zhi Sun
- Nanjing Omnipotent Peptide Biological Development Co., Ltd
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Merino O, Figueroa E, Valdebenito I, Risopatrón J, Merino M, Farías JG. Change in the swimming pattern of Salmo salar spermatozoa caused by the high temperature of the sperm motility activation medium. Theriogenology 2024; 219:49-58. [PMID: 38387124 DOI: 10.1016/j.theriogenology.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Fish are ectotherms and many have an external reproductive mode. An environmental factor which triggers fish reproductive activity in fish is water temperature. However, climate change is causing increasingly frequent events in which the water temperature varies rapidly; as a result, both in hatchery and in natural conditions, fish sperm are exposed to varying environmental temperatures during their journey toward the egg. This study was based on two experiments: The first experiment was designed to determine how storage at 4 °C for four days affected the sperm functions of Atlantic salmon (Salmo salar) sperm collected by either abdominal massage (stripping/Pure) or testicular dissection (testicular macerate/Macerated). Further, computer-assisted semen analysis (CASA) was used to compare sperm velocity parameters (VCL, VSL, and VAP) and progressivity (STR, LIN, and WOB) after motility activation at different temperatures (8 and 16 °C) of sperm collected by both methods (Pure vs Macerated). The results show that spermatozoa from Macerated samples maintained a higher sperm function when stored at 4 °C for 4 days compared to Pure sperm samples. In the second experiment, CASA determined that all parameters for sperm velocity (VCL, VSL, and VAP) and progressivity (STR (50%/55%), LIN (25%-32%), and WOB (51%-57%) were affected by activation temperature (P < 0.05) and that the motility patterns after activation at 16 °C (P < 0.05), specifically the LIN or STR swimming trajectories of the sperm differed between the two groups. In conclusion, the sperm quality of testicular Macerate was superior to that of Pure sperm abdominal mass, based on the higher quality of various sperm functions during short-term storage. Moreover, there was a significant effect of the temperature of the activation medium on sperm speed and progressivity (motility pattern) in the collected samples of testicular macerate. The sensitivity of Salmo salar spermatozoa to elevated temperature varies markedly between collection methods (Pure and Macerated).
Collapse
Affiliation(s)
- Osvaldo Merino
- Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile; Department of Basic Sciences, Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Elías Figueroa
- Food Production Research Nucleus, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Iván Valdebenito
- Food Production Research Nucleus, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Jennie Risopatrón
- Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile; Department of Basic Sciences, Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Maxsihel Merino
- Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Jorge G Farías
- Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile; Chemical Engineering Department, Faculty of Engineering and Sciences, University of La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
4
|
Taboada FG, Chust G, Santos Mocoroa M, Aldanondo N, Fontán A, Cotano U, Álvarez P, Erauskin-Extramiana M, Irigoien X, Fernandes-Salvador JA, Boyra G, Uriarte A, Ibaibarriaga L. Shrinking body size of European anchovy in the Bay of Biscay. GLOBAL CHANGE BIOLOGY 2024; 30:e17047. [PMID: 38273534 DOI: 10.1111/gcb.17047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Decreased body size is often cited as a major response to ocean warming. Available evidence, however, questions the actual emergence of shrinking trends and the prevalence of temperature-driven changes in size over alternative drivers. In marine fish, changes in food availability or fluctuations in abundance, including those due to size-selective fishing, provide compelling mechanisms to explain changes in body size. Here, based on three decades of scientific survey data (1990-2021), we report a decline in the average body size-length and weight-of anchovy, Engraulis encrasicolus L., in the Bay of Biscay. Shrinking was evident in all age classes, from juveniles to adults. Allometric adjustment indicated slightly more pronounced declines in weight than in total length, which is consistent with a change toward a slender body shape. Trends in adult weight were nonlinear, with rates accelerating to an average decline of up to 25% decade-1 during the last two decades. We found a strong association between higher anchovy abundance and reduced juvenile size. The effect of density dependence was less clear later in life, and temperature became the best predictor of declines in adult size. Theoretical analyses based on a strategic model further suggested that observed patterns are consistent with a simultaneous, opposing effect of rising temperatures on accelerating early growth and decreasing adult size as predicted by the temperature-size rule. Macroecological assessment of ecogeographical-Bergmann's and James'-rules in anchovy size suggested that the observed decline largely exceeds intraspecific variation and might be the result of selection. Limitations inherent in the observational nature of the study recommend caution and a continued assessment and exploration of alternative drivers. Additional evidence of a climate-driven regime shift in the region suggests, however, that shrinking anchovy sizes may signal a long-lasting change in the structure and functioning of the Bay of Biscay ecosystem.
Collapse
Affiliation(s)
- Fernando G Taboada
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Guillem Chust
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - María Santos Mocoroa
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Naroa Aldanondo
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Almudena Fontán
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Unai Cotano
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Paula Álvarez
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - Xabier Irigoien
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - Guillermo Boyra
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Andrés Uriarte
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Leire Ibaibarriaga
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| |
Collapse
|
5
|
Amelot M, Robert M, Mouchet M, Kopp D. Boreal and Lusitanian species display trophic niche variation in temperate waters. Ecol Evol 2023; 13:e10744. [PMID: 38020684 PMCID: PMC10659821 DOI: 10.1002/ece3.10744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Climate change has non-linear impacts on species distributions and abundance that have cascading effects on ecosystem structure and function. Among them are shifts in trophic interactions within communities. Sites found at the interface between two or more biogeographical regions, where species with diverse thermal preferenda are assembled, are areas of strong interest to study the impact of climate change on communities' interactions. This study examined variation in trophic structure in the Celtic Sea, a temperate environment that hosts a mixture of cold-affiliated Boreal species and warm-affiliated Lusitanian species. Using carbon and nitrogen stable isotope ratios, trophic niche area, width, and position were investigated for 10 abundant and commercially important demersal fish species across space and time. In general, the niches of Boreal species appear to be contracting while those of Lusitanian species expand, although there are some fluctuations among species. These results provide evidence that trophic niches can undergo rapid modifications over short time periods (study duration: 2014-2021) and that this process may be conditioned by species thermal preferenda. Boreal species displayed spatial variation in trophic niche width and seem to be facing increased competition with Lusitanian species for food resources. These findings underscore the need to utilize indicators related to species trophic ecology to track the ecosystem alterations induced by climate change. Such indicators could reveal that the vulnerability of temperate ecosystems is currently being underestimated.
Collapse
Affiliation(s)
- Morgane Amelot
- Centre d'Ecologie et des Sciences de la ConservationUMR 7204 MNHN‐CNRS‐ Sorbonne Université, Muséum national d'Histoire naturelle de ParisParisFrance
- UMR DECOD (Ecosystem Dynamics and Sustainability)IFREMER, INRAE, Institut AgroPlouzaneFrance
| | - Marianne Robert
- UMR DECOD (Ecosystem Dynamics and Sustainability)IFREMER, INRAE, Institut AgroPlouzaneFrance
| | - Maud Mouchet
- Centre d'Ecologie et des Sciences de la ConservationUMR 7204 MNHN‐CNRS‐ Sorbonne Université, Muséum national d'Histoire naturelle de ParisParisFrance
| | - Dorothée Kopp
- UMR DECOD (Ecosystem Dynamics and Sustainability)IFREMER, INRAE, Institut AgroPlouzaneFrance
| |
Collapse
|
6
|
Andrade H, Vihtakari M, Santos J. Geographic variation in the life history of lane snapper Lutjanus synagris, with new insights from the warm edge of its distribution. JOURNAL OF FISH BIOLOGY 2023; 103:950-964. [PMID: 37339932 DOI: 10.1111/jfb.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Research on life-history variations in widely distributed fish species is needed to understand global warming impacts on populations and to improve fisheries management advice. The lane snapper Lutjanus synagris (Linnaeus, 1758) is commercially important to fisheries in the Western Central Atlantic, where spread information on its life-history traits is available. We studied growth, age, reproduction and mortality of lane snapper in the Guatemalan Caribbean, the warmest part of its distribution range, and collated the new information with published data in a latitudinal analysis extending between 18°S and 30°N. Longevity was estimated at 11 years, and von Bertalanffy growth parameters were asymptotic length (Linf) 45.6 and 42.2 cm for females and males, respectively, the growth coefficient (K) was 0.1 year-1 and the theoretical age at zero length (t0 ) was -4.4 years. Lane snapper grew slowest in April, prior to the rainy season, and at the onset of the reproductive season, which lasted from May to October. Fifty percent of female and male lane snappers matured at 23 and 17 cm, corresponding to 3.5 and 2.4 years of age respectively. A regional multivariate analysis found seawater temperature to be an important driver of life-history variation. Lane snapper lifespan was shorter at the warm edge of its distribution range, and maximum size and peak reproductive investment were negatively related to sea surface temperature. The trade-offs in lane snapper life-history traits and phenology likely enhance its fitness to differing environments. Interpolation from the present regional estimates to less-studied regions of the Caribbean is useful for preliminary understanding of reaction norms and harvest potentials.
Collapse
Affiliation(s)
- Hector Andrade
- Institute of Marine Research, Tromsø, Norway
- Faculty for Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
- Akvaplan-niva AS, Tromsø, Norway
| | | | - Jorge Santos
- Faculty for Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
7
|
Geffroy B, Sandoval-Vargas L, Boyer-Clavel M, Pérez-Atehortúa M, Lallement S, Isler IV. A simulated marine heatwave impacts European sea bass sperm quantity, but not quality. JOURNAL OF FISH BIOLOGY 2023; 103:784-789. [PMID: 36648097 DOI: 10.1111/jfb.15327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Rapid environmental changes will be the major challenge that most biota will have to deal with in the near future. Extreme events, such as marine heatwaves, are becoming more frequent and could be spatially uniform at a regional scale for a relatively long period of time. To date, most research studies on heatwaves have focused on sessile organisms, but these extreme events can also impact mobile species. Here, a 3-week marine heatwave was simulated to investigate its effects on the male reproductive performance of a Mediterranean Sea emblematic species, the European sea bass Dicentrarchus labrax. Males from the control condition (c. 13°C) produced significantly more sperm than those exposed to a relatively warm thermal treatment (c. 16°C). Nonetheless, neither the percentage of motile spermatozoa nor most of the other sperm motility parameters were significantly affected by the rearing temperature over the whole period. Overall, the results of this study suggest only moderated effects of a potential winter heatwave on the reproductive performance of male European sea bass.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Leydy Sandoval-Vargas
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, University of Montpellier, CNRS, Montpellier, France
| | - Maritza Pérez-Atehortúa
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Stephane Lallement
- MARBEC University of Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Iván Valdebenito Isler
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| |
Collapse
|
8
|
Alfonso S, Houdelet C, Bessa E, Geffroy B, Sadoul B. Water temperature explains part of the variation in basal plasma cortisol level within and between fish species. JOURNAL OF FISH BIOLOGY 2023; 103:828-838. [PMID: 36756681 DOI: 10.1111/jfb.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Within the thermal tolerance range of fish, metabolism is known to escalate with warming. Rapid thermic changes also trigger a series of physiological responses, including activation of the stress axis, producing cortisol. Fish have adapted to their environment by producing a low level of plasmatic cortisol when unstressed (basal), so that thriving in their natural temperature should not impact their basal cortisol levels. Yet, surprisingly, little is known on how temperature affects cortisol within and between fish species. Here, we conducted a phylogenetic meta-analysis to (1) test whether temperature can explain the differences in basal cortisol between species and (2) evaluate the role of temperature on differences in cortisol levels between individuals of a same species. To do this, we retrieved basal plasma cortisol data from 126 studies, investigating 33 marine and freshwater fish species, and correlated it to water temperature. Intra-species variability in basal plasma cortisol levels was further investigated in two species: the European sea bass Dicentrarchus labrax and the Nile tilapia Oreochromis niloticus. Factors such as life stage, sex and weight were also considered in the analyses. Overall, our phylogenetic analysis revealed a clear positive correlation between basal cortisol level and the temperature at which the fish live. The role of temperature has also been confirmed within D. labrax, while it failed to be significant in O. niloticus. In this paper, the influence of habitat, life stage, sex and weight on basal plasma cortisol levels is also discussed. Since some abiotic parameters were not included in the analysis, our study is a call to encourage scientists to systematically report other key factors such as dissolved oxygen or salinity to fully depict the temperature-cortisol relationship in fishes.
Collapse
Affiliation(s)
| | - Camille Houdelet
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eduardo Bessa
- Graduate Program in Ecology, Life and Earth Sciences, University of Brasília, Brasília, Brazil
| | - Benjamin Geffroy
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Bastien Sadoul
- DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| |
Collapse
|
9
|
Khalid A, Galobart C, Rubio-Gracia F, Atli G, Guasch H, Vila-Gispert A. A trait-based approach to determine the risks of Zn to the overall health status of native fish species Barbus meridionalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106661. [PMID: 37611456 DOI: 10.1016/j.aquatox.2023.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Fish adapt to changing environments by maintaining homeostasis or making energy trade-offs that impact fitness. We investigated the effect of Zn on the fitness and physiology of Barbus meridionalis, a native cyprinid fish species, under two exposure scenarios. The Osor stream's mine-effluent reach represented long-term (chronic) exposure, while the upstream reach served as a control/acute exposure. Acute exposure involved exposing B. meridionalis to 1mg/L Zn for 96 h in the laboratory. We examined physiological traits (Standard metabolic rate SMR, Maximum metabolic rate MMR, Absolute Aerobic scope AAS, Critical swimming capacity Ucrit) and antioxidant system, AS (Superoxide dismutase, SOD; Catalase, CAT; Glutathione peroxidase, GPX; Glutathione-S-transferase, GST; Glutathione, GSH; Thiobarbaturic acid reactive substances, TBARS) biomarkers. The results indicated that Zn had no significant effect on osmoregulatory cost (SMR) in either exposure scenario but impaired energetically costly exercise (low MMR). AAS reduction in both exposure groups suggested compromised energy allocation for life-history traits, evidenced by decreased locomotor performance (Ucrit) after acute exposure. Tissue-specific and time-dependent responses were observed for AS biomarkers. The fish exhibited ineffective control of oxidative damage, as evidenced by high TBARS levels in the liver and gills, despite increased CAT and GSH in the liver under acute conditions. Our findings demonstrate differential responses at the subcellular level between the two exposure scenarios, while trait-based endpoints followed a similar pattern. This highlights the utility of a trait-based approach as a supplementary endpoint in biomonitoring studies, which provides insights into impacts on individual fitness and population demography.
Collapse
Affiliation(s)
- Amina Khalid
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain.
| | - Cristina Galobart
- Centro de Estudios Avanzados de Blanes (CEAB), Spanish National Research Council (CSIC), Spain
| | | | - Guluzar Atli
- Biotechnology Center, Cukurova University, Adana, Turkey; Vocational School of Imamoğlu, Cukurova University, Adana, Turkey.
| | - Helena Guasch
- Centro de Estudios Avanzados de Blanes (CEAB), Spanish National Research Council (CSIC), Spain
| | - Anna Vila-Gispert
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
10
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
11
|
Dahlke F, Puvanendran V, Mortensen A, Pörtner HO, Storch D. Broodstock exposure to warming and elevated pCO 2 impairs gamete quality and narrows the temperature window of fertilisation in Atlantic cod. JOURNAL OF FISH BIOLOGY 2022; 101:822-833. [PMID: 35737847 DOI: 10.1111/jfb.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Impacts of global warming and CO2 -related ocean acidification (OA) on fish reproduction may include chronic effects on gametogenesis and gamete quality, as well as acute effects on external fertilisation. Here, temperature thresholds and OA-sensitivity of gametogenesis and fertilisation were investigated in Atlantic cod, Gadus morhua. Three broodstock groups of farmed cod (FC 1-3) were exposed for 3 months to three maturation conditions (FC 1: control, 6°C/400 μatm CO2 ; FC 2: warming, 9.5°C/400 μatm; FC 3: warming and OA, 9.5°C/1100 μatm). In addition, a broodstock group of wild cod (WC) was kept at control conditions to compare the acute temperature window of fertilisation with that of farmed cod (FC 1). Fertilisations were conducted in a temperature-gradient table at 10 temperatures (between -1.5 and 12°C) and two CO2 levels (400/1100 μatm). In FC 1 and WC, fertilisation success was relatively high between 0.5°C and 11°C (TRange of c. 10.5°C), indicating similar gamete quality in farmed and wild broodstocks kept at control conditions. Exposure of farmed broodstocks to warming (FC 2) and the combination of warming and OA (FC 3) impaired gamete quality, causing a reduction in fertilisation success of -20% (FC 2) and - 42% (FC 3) compared to FC 1. The acute temperature window of fertilisation narrowed from FC 1 (TRange = 10.4°C) to FC 2 (TRange = 8.8°C) and FC 3 (TRange = 5.9°C). Acute effects of CO2 on fertilisation success were not significant. This study demonstrates potential climate change impacts on gametogenesis and fertilisation in Atlantic cod, suggesting the loss of spawning habitat in the coming decades.
Collapse
Affiliation(s)
- Flemming Dahlke
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | | | | | - Hans-Otto Pörtner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
- Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Daniela Storch
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| |
Collapse
|
12
|
Shi P, Wang H, Feng M, Cheng H, Yang Q, Yan Y, Xu J, Zhang M. Bacterial Metabolic Potential in Response to Climate Warming Alters the Decomposition Process of Aquatic Plant Litter-In Shallow Lake Mesocosms. Microorganisms 2022; 10:1327. [PMID: 35889044 PMCID: PMC9316218 DOI: 10.3390/microorganisms10071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Increased decomposition rates in shallow lakes with global warming might increase the release of atmospheric greenhouse gases, thereby producing positive feedback for global warming. However, how climate warming affects litter decomposition is still unclear in lake ecosystems. Here, we tested the effects of constant and variable warming on the bacterial metabolic potential of typically submerged macrophyte (Potamogeton crispus L.) litters during decomposition in 18 mesocosms (2500 L each). The results showed that warming reduced main chemoheterotrophic metabolic potential but promoted methylotrophy metabolism, which means that further warming may alter methane-cycling microbial metabolism. The nitrate reduction function was inhibited under warming treatments, and nitrogen fixation capability significantly increased under variable warming in summer. The changes in dissolved oxygen (DO), pH, conductivity and ammonium nitrogen driven by warming are the main environmental factors affecting the bacteria's metabolic potential. The effects of warming and environmental factors on fermentation, nitrate reduction and ammonification capabilities in stem and leaf litter were different, and the bacterial potential in the stem litter were more strongly responsive to environmental factors. These findings suggest that warming may considerably alter bacterial metabolic potential in macrophyte litter, contributing to long-term positive feedback between the C and N cycle and climate.
Collapse
Affiliation(s)
- Penglan Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| |
Collapse
|