1
|
Zhan F, Li Q, Feng H, Lin R, Liang W, Lin L, Qin Z. A short-term of starvation improved the antioxidant activity and quality of African catfish (Clarias gariepinus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:911-925. [PMID: 38300371 DOI: 10.1007/s10695-024-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Clarias gariepinus is an important freshwater fish with high economic value and breeding potential in China. It is a fast-growing and adaptable catfish, but the main problems facing the current market are its low price and poor taste, although starvation is a good solution to these problems. In this study, the effects of starvation on the physiology, biochemistry, and muscle quality of C. gariepinus were investigated. The results showed that compared with the control group, the weight gain rate and specific growth rate of the starvation group were significantly different. Body weight, visceral weight, condition factor, viscerosomatic index, hepatosomatic index, and viscera fat index all decreased, while visceral weight and hepatosomatic index decreased significantly after starvation for 30 days. The hardness and crude protein of muscle increased significantly and crude lipid decreased significantly. Taste-enhancing amino acids increased slightly, and fatty acids increased significantly. Compared with the control group, starvation led to changes in antioxidant defense parameters. The level of malondialdehyde (MDA) in liver increased significantly; the activities of superoxide dismutase (SOD) increased in serum after 30 days; the activities of glutathione peroxidase (GSH-Px) increased considerably in the serum and liver after 15 days; the activities of alanine aminotransferase (ALT) increased considerably in the serum and liver after 30 days. The in-depth study of changes in physiological, biochemical, and nutritional components of fish under starvation is helpful to understand the ecological strategy of fish to adapt to starvation and of great guiding significance for fishery resource management and aquaculture production.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Huiwen Feng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Ruikang Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Weiming Liang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong Province, China.
| |
Collapse
|
2
|
Zhang Z, Yuan X, Wu H, Gao J, Wu J, Xiong Z, Feng Z, Xie M, Li S, Xie Z, Zeng G. The Effect of Short-Term Artificial Feed Domestication on the Expression of Oxidative-Stress-Related Genes and Antioxidant Capacity in the Liver and Gill Tissues of Mandarin Fish ( Siniperca chuatsi). Genes (Basel) 2024; 15:487. [PMID: 38674421 PMCID: PMC11050011 DOI: 10.3390/genes15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
To investigate whether Mandarin fish developed oxidative stress after being domesticated with artificial feed, we conducted a series of experiments. Oxidative stress is an important factor leading to diseases and aging in the body. The liver integrates functions such as digestion, metabolism, detoxification, coagulation, and immune regulation, while the gills are important respiratory organs that are sensitive to changes in the water environment. Therefore, we used the liver and gills of Mandarin fish as research materials. The aim of this study was to investigate the effects of short-term artificial feed domestication on the expression of oxidative stress genes and the changes in oxidative-stress-related enzyme activity in the liver and gills of Mandarin fish. We divided the Mandarin fish into two groups for treatment. The control group was fed with live bait continuously for 14 days, while the experimental group was fed with half artificial feed and half live bait from 0 to 7 days (T-7 d), followed by solely artificial feed from 7 to 14 days (T-14 d). The experimental results showed that there was no difference in the body weight, length, and standard growth rate of the Mandarin fish between the two groups of treatments; after two treatments, there were differences in the expression of genes related to oxidative stress in the gills (keap1, kappa, gsta, gstt1, gstk1, SOD, and CAT) and in the liver (GPx, keap1, kappa, gsta, gstt1, gr, and SOD). In the liver, GPx activity and the content of MDA were significantly upregulated after 7 days of domestication, while in the gills, SOD activity was significantly upregulated after 7 days of domestication and GPx activity was significantly downregulated after 14 days of domestication. These results suggest that artificial feed domestication is associated with oxidative stress. Moreover, these results provide experimental basic data for increasing the production of aquaculture feed for Mandarin fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China; (Z.Z.); (X.Y.); (H.W.); (J.G.); (J.W.); (Z.X.); (Z.F.); (S.L.); (Z.X.); (G.Z.)
| | | | | | | |
Collapse
|
3
|
Yang YL, Zeng WH, Peng Y, Zuo SY, Fu YQ, Xiao YM, Huang WL, Wen ZY, Hu W, Yang YY, Huang XF. Characterization of three lamp genes from largemouth bass ( Micropterus salmoides): molecular cloning, expression patterns, and their transcriptional levels in response to fast and refeeding strategy. Front Physiol 2024; 15:1386413. [PMID: 38645688 PMCID: PMC11026864 DOI: 10.3389/fphys.2024.1386413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wan-Hong Zeng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yong Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Shi-Yu Zuo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yuan-Qi Fu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yi-Ming Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wen-Li Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wei Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Yu-Ying Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Feng Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|