1
|
Shen L, Yu X, Zhou H, Wang J, Zhao H, Qiu G, Chen Z. Optimization and mechanism studies for the biosorption of rare earth ions by Yarrowia lipolytica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52118-52131. [PMID: 39136922 DOI: 10.1007/s11356-024-34660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
Research on the recovery of rare earth elements from wastewater has attracted increasing attention. Compared with other methods, biosorption is a simple, efficient, and environmentally friendly method for rare earth wastewater treatment, which has greater prospects for development. The objective of this study was to investigate the biosorption behavior and mechanism of Yarrowia lipolytica for five rare earth ions (La3⁺, Nd3⁺, Er3⁺, Y3⁺, and Sm3⁺) with a particular focus on biosorption behavior, biosorption kinetics, and biosorption isotherm. It was demonstrated that the biosorption capacity of Y. lipolytica at optimal conditions was 76.80 mg/g. It was discovered that the biosorption process complied with the pseudo-second-order kinetic model and the Langmuir biosorption isotherm, indicating that Y. lipolytica employed a monolayer chemical biosorption process to biosorb rare earth ions. Characterization analysis demonstrated that the primary functional groups involved in rare earth ion biosorption were amino, carboxyl, and hydroxyl groups. The cooperative biosorption of rare earth ions by Y. lipolytica was facilitated by means of surface complexation, ion exchange, and electrostatic interactions. These findings suggest that Y. lipolytica has the potential to be an effective biosorbent for the removal of rare earth elements from wastewater.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Xinyi Yu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Hao Zhou
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Junjun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Hongbo Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Zhu Chen
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China.
| |
Collapse
|
2
|
Iovinella M, Palmieri M, Papa S, Auciello C, Ventura R, Lombardo F, Race M, Lubritto C, di Cicco MR, Davis SJ, Trifuoggi M, Marano A, Ciniglia C. Biosorption of rare earth elements from luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta). ENVIRONMENTAL RESEARCH 2023; 239:117281. [PMID: 37827370 DOI: 10.1016/j.envres.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Lanthanides are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and eco-friendly recycling methods. In the present study, freeze-dried biomass of the polyextremophile Galdieria sulphuraria was employed to recover REEs from spent fluorescent lamps (FL) luminophores by pretreating the freeze-dried biomass with an acid solution to favour ion exchange and enhance the binding sites on the cell surface available for the metal ions. Lanthanides were extracted from the luminophores using sulfuric acid solutions according to standardised procedures, and the effect of biosorbent dosage (0.5-5 mg/ml) and biosorption time (5-60 min) were evaluated. The content of individual REEs in the luminophores and the resulting algal biomass were determined using inductively coupled plasma mass spectrometry (ICP-MS). The most abundant REE in the luminophores was yttrium (287.42 mg/g dm, 91.60% of all REEs), followed by europium (20.98 mg/g, 6.69%); cerium, gadolinium, terbium and lanthanum was in trace. The best biosorption performances were achieved after 5 min and at the lowest biosorbent dosage (0.5 mg/mL). The highest total metal amount corresponded to 41.61 mg/g dried mass, and yttrium was the most adsorbed metal (34.59 mg/g dm, 82.88%), followed by cerium (4.01 mg/g); all other metals were less than 2 mg/g. The rapidity of the biosorption process and the low biosorbent dosage required confirmed this microalga as a promising material for creating an eco-sustainable protocol for recycling REEs.
Collapse
Affiliation(s)
- M Iovinella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy; Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - M Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S Papa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - C Auciello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - R Ventura
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - F Lombardo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Italy
| | - C Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - M R di Cicco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S J Davis
- Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - M Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - A Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - C Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy; Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK.
| |
Collapse
|
3
|
Modulatory effects of Porphyra-derived polysaccharides, oligosaccharides and their mixture on antigen-specific immune responses in ovalbumin-sensitized mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep 2022; 12:4861. [PMID: 35318347 PMCID: PMC8941142 DOI: 10.1038/s41598-022-08542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
The discharge of yttrium containing wastewater is a potential risk to human health. Although biosorption is a promising method to remove yttrium from wastewater, whereas the application of it is limited due to the lack of efficient biosorbents. In this study, the removal of yttrium from wastewater using Serratia marcescens as a biosorbent was conducted. The effects of six parameters including pH (2–5.5), initial yttrium concentration (10–110 mg/L), biosorbent dosage (0.1–0.5 g/L), biosorption time (10–700 min), stirring speed (50–300 rpm) and temperature (20–60 °C) were evaluated. The main parameters were optimized using response surface methodology. The results showed that the adsorption capacity reached 123.65 mg/g at the optimized conditions. The biosorption mechanism was revealed based on a combined analysis using field emission transmission electron microscope-energy dispersion spectrum, Fourier transform infrared spectrophotometer, and X-ray photoelectron spectroscopy. These results revealed that the hydroxyl, carboxyl, and amino groups were the adsorption functional groups for yttrium ions. Biosorption of yttrium by S. marcescens is under the combination of ion exchange, electrostatic attraction and complexation. These findings indicated that S. marcescens can be used as an efficient biosorbent to remove yttrium from wastewater. In addition, its adsorption capacity can be further improved by the enhancement of adsorption functional groups on the surface through chemical modification.
Collapse
|
6
|
Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49:8315-8334. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
7
|
Fabre E, Dias M, Costa M, Henriques B, Vale C, Lopes CB, Pinheiro-Torres J, Silva CM, Pereira E. Negligible effect of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green, brown and red living marine macroalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138133. [PMID: 32268287 DOI: 10.1016/j.scitotenv.2020.138133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/18/2023]
Abstract
Mercury (Hg) removal by six different living marine macroalgae, namely, Ulva intestinalis, Ulva lactuca, Fucus spiralis, Fucus vesiculosus, Gracilaria sp., and Osmundea pinnatifida was investigated in mono and multi-contamination scenarios. All macroalgae were tested under the same experimental conditions, evaluating the competition effects with all elements at the same initial molar concentration of 1 μmol dm-3. The presence of the main potentially toxic elements (Cd, Cr, Cu, Ni, and Pb) and rare earth elements (La, Ce, Pr, Nd, Eu, Gd, Tb, and Y) has not affected the removal of Hg. Characterizations of the macroalgae by FTIR before and after the biosorption/bioaccumulation assays suggest that Hg was mainly linked to sulfur-functional groups, while the removal of other elements was related with other functional groups. The mechanisms involved point to biosorption of Hg on the macroalgae surface followed by possible incorporation of this metal into the macroalgae by metabolically active processes. Globally, the green macroalgae (Ulva intestinalis, Ulva lactuca) showed the best performances for Hg, potential toxic elements and rare earth elements removal from synthetic seawater spiked with 1 μmol dm-3 of each element, at room temperature and pH 8.5.
Collapse
Affiliation(s)
- Elaine Fabre
- CICECO & CESAM, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Dias
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marcelo Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruno Henriques
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Vale
- CIIMAR, University of Porto, Matosinhos, Portugal
| | - Cláudia B Lopes
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Carlos M Silva
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Eduarda Pereira
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
8
|
Mac Monagail M, Morrison L. Arsenic speciation in a variety of seaweeds and associated food products. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|