1
|
Elmizadeh A, Goli SAH, Mohammadifar MA. Characterization of pectin-zein nanoparticles encapsulating tanshinone: Antioxidant activity, controlled release properties, physicochemical stability to environmental stresses. Food Chem 2024; 460:140613. [PMID: 39067391 DOI: 10.1016/j.foodchem.2024.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Tanshinone compounds, natural antioxidants found in the roots of Salvia subg Perovskia plants, offer various health benefits and can serve as natural food additives, replacing synthetic antioxidants. In this study, the nanoparticles were created using the antisolvent method, which were then evaluated for their antioxidant and antibacterial properties, as well as their ability to release tanshinone and withstand environmental stress. The results of the study demonstrated a significant improvement in the antioxidant capabilities of tanshinone with the nanoparticle coating. The T/Z/P NPs exhibited enhanced tanshinone release under simulated gastrointestinal conditions compared to T/Z nanoparticles. These nanoparticles displayed remarkable stability against fluctuations in environmental pH and thermal conditions. The study also revealed that the critical flocculation concentration of the system was 0.5 M of salt. Furthermore, the T/Z/P NPs showed good stability during storage at 4°C for 30 days, making them an excellent candidate for use in various food products.
Collapse
Affiliation(s)
- Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Günter EA, Melekhin AK, Belozerov VS, Martinson EA, Litvinets SG. Preparation, physicochemical characterization and swelling properties of composite hydrogel microparticles based on gelatin and pectins with different structure. Int J Biol Macromol 2024; 258:128935. [PMID: 38143057 DOI: 10.1016/j.ijbiomac.2023.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Composite hydrogel microparticles based on pectins with different structures (callus culture pectin (SVC) and apple pectin (AU)) and gelatin were developed. Hydrogel microparticles were formed by the ionotropic gelation and electrostatic interaction of COO- groups of pectin and NH3+ groups of gelatin, which was confirmed by FTIR spectroscopy. The addition of gelatin to pectin-based gel formulations resulted in a decrease in gel strength, whereas increasing gelatin concentration enhanced this effect. The microparticle gel strength increased in proportion to the increase in the pectin concentration. The DSC and TGA analyzes showed that pectin-gelatin gels had the higher thermal stability than individual pectins. The gel strength, Ca2+ content and thermal stability of the microparticles based on gelatin and SVC pectin with a lower degree of methylesterification (DM) (14.8 %) were higher compared to that of microparticles based on gelatin and AU pectin with a higher DM (40 %). An increase in the SVC concentration, Ca2+ content and gel strength of SVC-gelatin microparticles led to a decrease in the swelling degree in simulated gastrointestinal fluids. The addition of 0.5 % gelatin to gels based on AU pectin resulted in increased stability of the microparticles in gastrointestinal fluids, while the microparticles from AU without gelatin were destroyed.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Anatoliy K Melekhin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| | - Vladislav S Belozerov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya str., Syktyvkar 167982, Russia; Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | | | | |
Collapse
|
3
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Pectin-based nanoencapsulation strategy to improve the bioavailability of bioactive compounds. Int J Biol Macromol 2023; 229:11-21. [PMID: 36586647 DOI: 10.1016/j.ijbiomac.2022.12.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Pectin is one of the polysaccharides to be used as a coating nanomaterial. The characteristics of pectin are suitable to form nanostructures for protection, increased absorption, and bioavailability of different active compounds. This review aims to point out the structural features of pectins and their use as nanocarriers. It also indicates the principal methodologies for the elaboration and application of foods. The research carried out shows that pectin is easily extracted from natural sources, biodegradable, biocompatible, and non-toxic. The mechanical resistance and stability in different pH ranges and the action of digestive enzymes allow the nanostructures to pass intact through the gastrointestinal system and be effectively absorbed. Pectin can bind to macromolecules, especially proteins, to form stable nanostructures, which can be formed by different methods; polyelectrolyte complexes are the most frequent ones. The pectin-derived nanoparticles could be added to foods and dietary supplements, demonstrating a promising nanocarrier with a broad technological application.
Collapse
|
5
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Ma Y, Li C, Xiu W, Wang X. In vivo and in vitro evaluation of stability and antioxidant activity of lycopene-nanostructured lipid carriers. Food Sci Biotechnol 2022; 32:833-845. [PMID: 37041811 PMCID: PMC10082695 DOI: 10.1007/s10068-022-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluates the stability of lycopene in the presence of the prepared nanostructured lipid carriers (NLCs) under different environments and food systems and the in vitro and in vivo antioxidant activity of the lycopene nanostructured lipid carriers (Lyco-NLCs) was studied. As observed in the stability experiment, Lyco-NLCs have good storage stability within 30 days. Food additives have little effect on its stability except for metal ions. Compared with free lycopene, Lyco-NLCs showed an improved antioxidant property. In in-vitro experiments, the DPPH radical scavenging rate, hydroxyl radical scavenging capacity, and ferric reducing capacity of Lyco-NLCs increased by 90.47%, 47.43%, and 45.12%, respectively. The animal experiments showed that the activities of catalase in the kidney, superoxide dismutase in the heart, and glutathione peroxidase in the liver increased by 31.48%, 42.50%, and 21.47%, respectively. The content of malondialdehyde in serum decreased by 14.13%. The results have some significance for the practical application of lycopene.
Collapse
Affiliation(s)
- Yongqiang Ma
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Chenchen Li
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Weiye Xiu
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Xin Wang
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| |
Collapse
|
7
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Sadeghi-Ghadi Z, Behjou N, Ebrahimnejad P, Mahkam M, Goli HR, Lam M, Nokhodchi A. Improving Antibacterial Efficiency of Curcumin in Magnetic Polymeric Nanocomposites. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractIn recent years, resistance to chemical antibiotics, as well as their side effects, has caused a necessity to utilize natural substances and herbal components with antibacterial effects. Curcumin, the major substance of Curcuma longa’s rhizome, was used as an antibacterial agent since ancient times. This work aimed to formulate a novel nanocomposite for the delivery of curcumin to overcome orthodox drugs resistance against bacteria and improve its efficacy. To fabricate targeting nanocomposites, first, Fe3O4 nanoparticles were synthesized followed by coating the obtained nanoparticles using sodium alginate containing curcumin. A 2 by 3 factorial design was tailored to predict the optimum formulation of nanocomposites. Characterization of nanocomposites including particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, and drug loading was performed. The optimum formulation was analyzed by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FT-IR), and in vitro release study at different pHs. Finally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of samples against seven common bacteria were determined. Results showed that the optimized formulation contained 400 nm particles with the PDI and zeta potentials of 0.4 and − 58 mV, respectively. The optimized formulation with 70% entrapment efficiency reduced the MIC value 2 to 4 times in comparison with pure curcumin. Results also showed that polymer and drug concentrations can significantly affect entrapment efficiency. In conclusion, the current investigation demonstrated that this magnetic nanocomposite can be applied for the delivery of curcumin.
Graphical abstract
Collapse
|
10
|
|
11
|
Effect of Curcumin-Hydroxypropyl-$$\beta$$-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|