1
|
Zhang HL, Wang N, Shi XL, Wang MM, Zhu QM, Chang J, Feng YL, Zhang J, Qiu F, Sun CP. Sesquiterpenoids from Inula britannica and their potential mechanism for immunomodulation. PHYTOCHEMISTRY 2025; 231:114343. [PMID: 39613278 DOI: 10.1016/j.phytochem.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The immune system serves as a role of diseases, such as Parkinson's disease, and acute lung injury. An immunoregulatory activity-directed separation depended on phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Ion)-mediated Jurkat leukemic T cells was used for studying chemical constituents from Inula britannica L. in depth. Five previously undescribed aromatic sesquiterpenoid dimers inulabritanoids J-N (1-5) and a previously undescribed germacrane-type sesquiterpenoid britanicafanin F (6) were afforded from I. britannica as well as eight known sesquiterpenoids (7-14). Their structures were elucidated through 1D and 2D NMR, HRMS, and ECD spectra along with quantum chemical calculations. Immunomodulatory effects of compounds 1-14 were assayed in PMA plus Ion-mediated Jurkat cells, and indicated that compounds 8, 9, and 13 displayed significantly inhibitory effects toward IL-2 and IFN-γ. Further investigation of mechanism of action revealed that compound 13 inhibited phosphorylations of p38, ERK, and JNK to suppress c-Jun and c-Fos expressions, resulting in blocking the nuclear translocation of AP-1 (a complex of c-Jun and c-Fos) to regulate mRNA expressions of IL-2 and IFN-γ. Molecular docking analysis demonstrated that compound 13 could enter into the cavity of p38, ERK, and JNK, and from hydrogen bond interactions with Gly33, Lys53 Ser154, and Asp168 for p38, Lys54, Glu71, Ser153, and Asp167 for ERK, and Met149 and Asn152 for JNK, which supported the abovementioned results. These findings suggested that sesquiterpenoids from the genus Inula served as immunomodulators for treating diseases involved in immune and inflammatory responses.
Collapse
Affiliation(s)
- Hui-Lin Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Na Wang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xu-Liu Shi
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Miao-Miao Wang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Chang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yan-Li Feng
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Juan Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
2
|
Ibadullayeva AK, Kasela M, Kozhanova KK, Kadyrbayeva GM, Widelski J, Wojtanowski K, Józefczyk A, Suśniak K, Okińczyc P, Tleubayeva MI, Karaubayeva AA, Zhandabayeva MA, Mukhamedsadykova AZ, Malm A. Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia. Molecules 2024; 29:5749. [PMID: 39683911 DOI: 10.3390/molecules29235749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The genus Inula has been used in folk medicine for centuries; however, the data concerning Inula britannica L. are scarce. This study aimed at investigating the chemical composition of methanolic and ethanolic extracts from the aerial parts of I. britannica collected in Kazakhstan and evaluating their antimicrobial and antioxidant properties, with special attention being paid to polyphenols. The total content of polyphenols and flavonoids in the extracts was determined colorimetrically, while their qualitative and quantitative analyses were conducted using HPLC/ESI-QTOF-MS and RP-HPLC/DAD. Their antioxidant potential was determined using the FRAP and DPPH methods, whereas their antimicrobial activity was determined by the microdilution method towards a panel of reference microorganisms, including pathogens of the human gastrointestinal tract. Chemical analysis demonstrated that the methanolic extract had a higher content of polyphenols (58.02 vs. 43.44 mg GAE/g) and flavonoids (21.69 vs. 13.91 mg QUE/g) than the ethanolic extract. In both extracts, 15 compounds were identified, with the highest contents being those of cynarine (13.96 and 11.68 mg/g) and chlorogenic acid (9.22 and 5.09 mg/g). The DPPH assay showed a higher antioxidant activity of the methanolic extract (19.78 ± 0.12 mg GAE/g) in comparison to that of the ethanolic extract (15.56 ± 0.24 mg GAE/g). Similarly, the FRAP method showed that the methanolic extract exerted a much higher antioxidant activity (5.07 ± 0.18 mmol Fe2+/g) than the ethanolic extract (0.39 ± 0.01 mmol Fe2+/g). In contrast, both extracts showed similar antimicrobial properties, with the highest activity being that against Helicobacter pylori ATCC 43504 (MIC = 0.125-0.25 mg/mL). This paper presents novel data on I. britannica L., implying its significance as a source of valuable active compounds and being a prerequisite for further biological studies.
Collapse
Affiliation(s)
- Aktolkyn K Ibadullayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Kaldanay K Kozhanova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Gulnara M Kadyrbayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Krzysztof Wojtanowski
- Independent Laboratory of Chemistry of Natural Products, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 211a Borowska Street, 50-556 Wrocław, Poland
| | - Meruyert I Tleubayeva
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Aigerim A Karaubayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Moldir A Zhandabayeva
- Department of Pharmaceutical Technology, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Aigerim Z Mukhamedsadykova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Shen L, Shi J, Han W, Yu J, Yuan X, Gao H, Huang Y, Lv J, Wan C, Zhou P, Xiao Y, Zhang J, Wang B, Hu R, Yu F. Insights into small-molecule compound CY-158-11 antibacterial activity against Staphylococcus aureus. mSphere 2024; 9:e0064324. [PMID: 39311583 PMCID: PMC11520288 DOI: 10.1128/msphere.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on S. aureus biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward S. aureus. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of S. aureus, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of S. aureus infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating S. aureus. IMPORTANCE The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat S. aureus-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against S. aureus in vitro and in vivo at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for S. aureus infections.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinru Yuan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haojin Gao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Huang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianbo Lv
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Hu
- Shanghai Institute of Immunity and Infection Chinese Academy of Science, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Zhang Q, Feng Y, Zhao J, Sun S, Zheng T, Wang J, Chen H, Ye H, Lv S, Zhang Y, Wang S, Li Y, Dong Z. Caffeic acid-mediated photodynamic multifunctional hyaluronic acid-gallic acid hydrogels with instant and enduring bactericidal potency accelerate bacterial infected wound healing. Int J Biol Macromol 2024; 282:136877. [PMID: 39461641 DOI: 10.1016/j.ijbiomac.2024.136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The emergence of drug-resistant bacteria poses significant challenges in wound treatment. Antimicrobial photodynamic therapy has emerged as an effective approach to eliminating bacteria by inducing oxidative stress without causing drug resistance. Here, we developed a natural hyaluronic acid (HA)-gallic acid (GA) conjugation-based hydrogel combined with herbal photosensitizer-caffeic acid (CA), which exhibits self-healing ability, shape adaptability, biodegradability, and robust tissue adhesion. Under exposure to 400 nm light, caffeic acid acts as a photosensitizer, generating reactive oxygen species and oxidative damage to bacterial cell membranes. Furthermore, the presence of GA and CA displayed a continuous inhibitory effect on bacterial growth, along with antioxidant properties that promote wound healing even after the cessation of light exposure. The antibacterial mechanism of the HA-GA/CA hydrogel against MRSA, S. aureus, and E. coli was investigated through various assays measuring ATP levels, Zeta potential, hydroxyl radicals (·OH) generated by light irradiation, and biofilm clearance rate. Additionally, hydrogel's application in treating MRSA-infected wounds in mice under light irradiation demonstrated rapid wound-healing effects and biocompatibility. Overall, HA-GA/CA hydrogel provides a sustainable, antibiotic-free alternative for treating MRSA-infected wounds.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yifan Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jixiang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shuhui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Tingting Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jinrui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Huan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hanyi Ye
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shun Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yinghua Zhang
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, PR China
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ying Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| |
Collapse
|
5
|
Bae WY, Lee DU, Yu HS, Lee NK, Paik HD. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food Chem 2023; 429:136844. [PMID: 37454617 DOI: 10.1016/j.foodchem.2023.136844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to increase epigallocatechin gallate (EGCG) levels and attenuate the toxicity in Inulabritannica by fermentation using Lactobacillus plantarum SY12. The optimal medium was composed of 10 g of I. britannica, 4 g of xylose, 5 g of soytone, and 5 g of beef extract. The predicted value of EGCG was 237.327 μg/mL. To investigate damage in HepG2 cell lines by I. britannica extracts (IE) or fermented I. britannica extracts (FIE), cell viability, mitochondria membrane potential, the expression of apoptosis and autophagy genes, and chemical composition were measured. FIE increased cell viability, regulation of the gene expression (decreased p53, p62, p-ERK 1/2, and p-p38; increased CDK2 and CDK4) compared with IE. These results were explained by an increase in 1,3-dicaffeoylquinic acid and a decrease in 1-O-caffeoylquinic acid, 1-O-acetylbritannilactone, and ergolide in FIE. In conclusion, these results indicated that fermentation can mitigate the toxicity in I. britannica.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
6
|
Hong CR, Lee EH, Jung YH, Lee JH, Paik HD, Hong SC, Choi SJ. Development and Characterization of Inula britannica Extract-Loaded Liposomes: Potential as Anti-Inflammatory Functional Food Ingredients. Antioxidants (Basel) 2023; 12:1636. [PMID: 37627631 PMCID: PMC10451523 DOI: 10.3390/antiox12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the potential of Inula britannica extract encapsulated in liposomes as a functional food ingredient with enhanced bioavailability and stability. Inula britannica, known for its anti-inflammatory properties and various health benefits, was encapsulated using a liposome mass production manufacturing method, and the physical properties of liposomes were evaluated. The liposomes exhibited improved anti-inflammatory effects in lipopolysaccharide-activated RAW 264.7 macrophages, suppressing the production of pro-inflammatory mediators such as nitric oxide and prostaglandin E2 and downregulating the expression of iNOS and COX-2 transcription factors. Additionally, we observed reduced production of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and modulation of the NF-κB and mitogen-activated protein kinase signaling pathways. These findings suggest that Inula britannica extract encapsulated in liposomes could serve as a valuable functional food ingredient for managing and preventing inflammation-related disorders, making it a promising candidate for incorporation into various functional food products. The enhanced absorption and stability provided by liposomal encapsulation can enable better utilization of the extract's beneficial properties, promoting overall health and well-being.
Collapse
Affiliation(s)
- Chi Rac Hong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun Ha Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea;
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
- Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Song MW, Park JY, Kim WJ, Kim KT, Paik HD. Fermentative effects by probiotic Lactobacillus brevis B7 on antioxidant and anti-inflammatory properties of hydroponic ginseng. Food Sci Biotechnol 2023; 32:169-180. [PMID: 36647519 PMCID: PMC9839932 DOI: 10.1007/s10068-022-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Soil-cultivation presents environmental limitations and requires considerable labor, space, and water supply. Alternatively, hydroponically-cultured ginseng (HG) was improved its productivity, availability, and functionality. Improvement of bio-functionality by probiotic fermentation also has been studied. Therefore, in this study, HG was fermented using probiotics to enhance antioxidant and anti-inflammatory activities. Soil-cultivated ginseng (SG), 1 and 2-year HG (HG1, HG2) were extracted using 70% ethanol and fermented by Lactobacillus brevis B7. After fermentation, the phenolic and flavonoid contents, and antioxidant and NO scavenging activities were increased, and HG showed higher bioactivities than SG. Particularly, fermented HG2 showed the highest antioxidant and anti-inflammatory activities and significantly decreased the level of inflammatory mediators. Furthermore, fermented HG2 also effectively inhibited NF-κB signaling pathway. These results suggested that fermented HG significantly enhanced functionality compared to SG and non-fermented HG. This suggests that fermented HG is a potentially useful ingredient for developing health-functional foods or pharmaceutical materials.
Collapse
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| |
Collapse
|
8
|
Xing M, Liu S, Yu Y, Guo L, Wang Y, Feng Y, Fei P, Kang H, Ali MA. Antibacterial Mode of Eucommia ulmoides Male Flower Extract Against Staphylococcus aureus and Its Application as a Natural Preservative in Cooked Beef. Front Microbiol 2022; 13:846622. [PMID: 35350615 PMCID: PMC8957902 DOI: 10.3389/fmicb.2022.846622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
The research was conducted to elucidate the antibacterial performance and mode of action of Eucommia ulmoides male flower extract (EUMFE) against Staphylococcus aureus and its application as a natural preservative in cooked beef. The antibacterial activity was evaluated by determining the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The changes in membrane potential, contents of bacterial DNA and protein, integrity and permeability of the cell membrane, and cell morphology were analyzed to reveal the possible mode of action. The effect of EUMFE on the counts of S. aureus, pH, color, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) of the cooked beef stored at 4°C for 9 days were studied. The results showed that the DIZ, MIC, and MBC of EUMFE against S. aureus were 12.58 ± 0.23 mm, 40 mg/mL, and 80 mg/mL, respectively. The mode of action of EUMFE against S. aureus included hyperpolarization of cell membrane, decrease in bacterial DNA and protein contents, destruction of cell membrane integrity, increase in cell membrane permeability, and damage of cell morphology. After treatments with EUMFE, the growth of S. aureus and lipid oxidation in cooked beef were significantly inhibited (P < 0.05). The pH and TVB-N values of cooked beef treated with EUMFE were significantly reduced as compared to control group (P < 0.05). The color of cooked beef samples containing EUMFE showed decreased L* and b* values, and increased a* and ΔE* values. Therefore, our findings showed that EUMFE had a good antibacterial effect on S. aureus, and provided a theoretical basis for the application of EUMFE as a natural preservative in the preservation of cooked beef.
Collapse
Affiliation(s)
- Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Shun Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yaping Yu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ling Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Yage Feng
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China.,School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Huaibing Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Md Aslam Ali
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
9
|
Fan J, Sun H, Liu Y, Li X, Wu H, Ren X. Sanchen powder extract combined with vancomycin against methicillin-resistant Staphylococcus aureus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Inés Molina RD, Campos-Silva R, Díaz MA, Macedo AJ, Blázquez MA, Alberto MR, Arena ME. Inhibition of bacterial virulence factors of foodborne pathogens by paprika (Capsicum annuum L.) extracts. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Antimicrobial and Antibiofilm Effect of ε-Polylysine against Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli in Tryptic Soy Broth and Chicken Juice. Foods 2021; 10:foods10092211. [PMID: 34574320 PMCID: PMC8466587 DOI: 10.3390/foods10092211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
ε-Polylysine (ε-PL) is a safe food additive that is used in the food industry globally. This study evaluated the antimicrobial and antibiofilm activity of antibacterial peptides (ε-PL) against food poisoning pathogens detected in chicken (Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli). The results showed that minimum inhibitory concentrations (MICs) ranged between 0.031-1.0 mg/mL, although most bacterial groups (75%) showed MICs of 1.0 mg/mL. The reduction in the cell viability of pathogens due to ε-PL depended on the time and concentration, and 1/2 × MIC of ε-PL killed 99.99% of pathogens after 10 h of incubation. To confirm biofilm inhibition and degradation effects, crystal violet assay and confocal laser scanning microscopy (CLSM) were used. The biofilm formation rates of four bacterial groups (Salmonella, Listeria, E. coli, and multi-species bacteria) were 10.36%, 9.10%, 17.44%, and 21.37% at 1/2 × MIC of ε-PL, respectively. Additionally, when observed under a CLSM, ε-PL was found to induce biofilm destruction and bacterial cytotoxicity. These results demonstrated that ε-PL has the potential to be used as an antibiotic and antibiofilm material for chicken meat processing.
Collapse
|
12
|
Kim WJ, Yu HS, Bae WY, Ko KY, Chang KH, Lee NK, Paik HD. Chrysanthemum indicum suppresses adipogenesis by inhibiting mitotic clonal expansion in 3T3-L1 preadipocytes. J Food Biochem 2021; 45:e13896. [PMID: 34368979 DOI: 10.1111/jfbc.13896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Herbs have been of interest to treat diseases, including obesity, owing to their various bioactive constituents that exhibit therapeutic and prophylactic properties. The present study examined the anti-adipogenic effects and mechanisms of Chrysanthemum indicum aqueous extract (CAE) in 3T3-L1 preadipocytes. CAE comprises 1,3-dicaffeoylquinic acid, chlorogenic acid, kaempferol-3-O-glucoside, caffeic acid, and apigenin, which were corresponded with previous reports. CAE inhibited the accumulation of lipid droplets and significantly alleviated the expression of lipogenesis- and adipogenesis-associated biomarkers. Treatment with CAE inhibited the mitotic clonal expansion (MCE), corroborated by cell cycle arrest at the G0 /G1 phase, and mitigated the expression of cell cycle progression-associated proteins and in addition to phosphorylation of MCE-promoting transcription factors. Moreover, CAE downregulated the activation of Akt and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, CAE facilitates adipogenic inhibition during the early phase of differentiation, especially MCE, and its phenolic compounds can contribute to its anti-obesogenic properties. PRACTICAL APPLICATIONS: Chrysanthemum indicum has been mainly used as traditional herbal tea and drinks. Chrysanthemum indicum aqueous extract (CAE) inhibits adipogenesis by suppressing mitotic clonal expansion during the early phase of differentiation in 3T3-L1 preadipocytes. 1,3-Dicaffeoylquinic acid, chlorogenic acid, kaempferol-3-O-glucoside, caffeic acid, and apigenin were detected in CAE. Based on these findings, CAE can be used as nutraceutical agents for prevention and treatment of obesity.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kyung Yuk Ko
- National Institute of Food and Drug Safety Evaluation, Osong, Korea
| | | | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| |
Collapse
|
13
|
Interference in Staphylococcus Aureus Biofilm and Virulence Factors Production by Human Probiotic Bacteria with Antimutagenic Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05934-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Abdelaziz AA, El-Barrawy MA, El-Nagar RAM. Potent synergistic combination of rosuvastatin and levofloxacin against Staphylococcus aureus: in vitro and in vivo study. J Appl Microbiol 2020; 131:182-196. [PMID: 33326676 DOI: 10.1111/jam.14968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
AIMS The present study aims to evaluate the capability of rosuvastatin to synergize with levofloxacin against Staphylococcus aureus. METHODS AND RESULTS Rosuvastatin inhibited the growth of S. aureus with minimum inhibitory concentration of 16 μg ml-1 . Additionally, it showed a bactericidal effect at 4x minimum inhibition concentration. Using a checkerboard method, a synergistic effect was recorded when rosuvastatin was combined with levofloxacin showing against S. aureus isolate 28 (S 28). Furthermore, this combination was also able to display a significant reduction in biofilm formation (92·8%) and suppress the production of coagulase and β-haemolysin, and virulence factors of S. aureus isolate 28. An animal model for wound infection was used to assess the therapeutic effect of the test combination, in vivo. It was found that the test combination reduced the bacterial burden in the infected wounds by 91·3%. Pathological and histological analyses have revealed a decline in cell infiltration in the excisional wound skin tissue after treatment with rosuvastatin and levofloxacin combination. CONCLUSIONS Rosuvastatin combined with levofloxacin can be considered as a promising solution to combat S. aureus antibiotic resistance phenomenon. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the potential effect of rosuvastatin when used in combination with levofloxacin can be used as a topical antibacterial agent to treat S. aureus skin infections.
Collapse
Affiliation(s)
- A A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M A El-Barrawy
- Department of Medical Microbiology, High Institute of Public Health (HIPH), Alexandria University, Alexandria, Egypt
| | - R A M El-Nagar
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Laurel extracts inhibit Quorum sensing, virulence factors and biofilm of foodborne pathogens. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yu HS, Kim WJ, Bae WY, Lee NK, Paik HD. Inula britannica Inhibits Adipogenesis of 3T3-L1 Preadipocytes via Modulation of Mitotic Clonal Expansion Involving ERK 1/2 and Akt Signaling Pathways. Nutrients 2020; 12:E3037. [PMID: 33023055 PMCID: PMC7599673 DOI: 10.3390/nu12103037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
The flower of Inula britannica contains various phenolic compounds with prophylactic properties. This study aimed to determine the anti-adipogenic effect of an I. britannica flower aqueous extract (IAE) and its underlying mechanisms in the 3T3-L1 preadipocytes and to identify the phenolic compounds in the extract. Treatment with IAE inhibited the adipogenesis by showing a dose-dependent suppressed intracellular lipid accumulation and mitigated expression levels of lipogenesis- and adipogenesis-associated biomarkers including transcription factors. IAE exerted an anti-adipogenic effect through the modulation of the early phases of adipogenesis including mitotic clonal expansion (MCE). Treatment with IAE inhibited MCE by arresting the cell cycle at the G0/G1 phase and suppressing the activation of MCE-related transcription factors. Furthermore, IAE inhibited adipogenesis by regulating the extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Protocatechuic acid, chlorogenic acid, kaempferol-3-O-glucoside, and 6-methoxyluteolin, which are reported to exhibit anti-adipogenic properties, were detected in IAE. Therefore, modulation of early phases of adipogenesis, especially MCE, is a key mechanism underlying the anti-adipogenic activity of IAE. In summary, the anti-obesity effects of IAE can be attributed to its phenolic compounds, and hence, IAE can be used for the development of anti-obesity products.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-S.Y.); (W.-J.K.); (W.-Y.B.); (N.-K.L.)
| |
Collapse
|
17
|
Bae WY, Kim HY, Yu HS, Chang KH, Hong YH, Lee NK, Paik HD. Antimicrobial effects of three herbs (Brassica juncea, Forsythia suspensa, and Inula britannica) on membrane permeability and apoptosis in Salmonella. J Appl Microbiol 2020; 130:394-404. [PMID: 32734653 DOI: 10.1111/jam.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed synergistic effects of three herbs in Salmonella via increased membrane permeability and apoptosis. METHODS AND RESULTS Using high-performance liquid chromatography, four types of phenylethyl glycosides and a lignan were detected in the herb mixture (Brassica juncea, Forsythia suspensa, and Inula britannica). During treatment with the herb mixture (1×, 2×, or 4× the MIC), viable cells decreased to 1·87 log CFU per ml (Salmonella Gallinarum) and 2·33 log CFU per ml (Salmonella Enteritidis) after 12 h of incubation according to inhibition of tricarboxylic acid cycle (P < 0·01). In addition, N-phenyl-1-naphthylamine uptake increased from 229·00 to 249·67 AU in S. Gallinarum and from 232·00 to 250·67 AU in S. Enteritidis (P < 0·05), whereas membrane potential decreased from 8855·00 to 3763·25 AU and from 8703·67 to 4300·38 AU, respectively. Apoptotic Salmonella cells were observed by confocal laser scanning microscopy and flow cytometry. Transmission electron microscopy observations with negative staining showed protein leakage from damaged Salmonella. CONCLUSIONS These results showed the synergistic effect of the three herbs against avian pathogenic Salmonella induced by membrane damage and apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY Salmonella causes enormous economic losses in the poultry industry. These results indicated that potency of natural antimicrobial agents due to apoptosis in Salmonella.
Collapse
Affiliation(s)
- W-Y Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-Y Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-S Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - K-H Chang
- CJ CheilJedang Blossom Park, Gyeonggi-do, Korea
| | - Y-H Hong
- CJ CheilJedang Blossom Park, Gyeonggi-do, Korea
| | - N-K Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-D Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| |
Collapse
|
18
|
Kim HY, Bae WY, Yu HS, Chang KH, Hong YH, Lee NK, Paik HD. Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci Biotechnol 2019; 29:569-578. [PMID: 32296568 DOI: 10.1007/s10068-019-00690-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to increase the bioavailability of Inula britannica (IB) through fermentation with probiotic Weissella cibaria D30, and to evaluate the chemical composition, viability, and anti-inflammatory effect of fermented I. britannica (FIB). IB was fermented with W. cibaria D30 at 37 °C for 24 h. FIB increased total phenolic content and decreased total flavonoid content of IB. 1-O-acetylbritannilactone and ergolide production, which are associated with the viability, increased from 1.38 to 4.13 μg/mg, and decreased from 5.24 to 0.94 μg/mg, in the control and FIB, respectively. In addition, the cell viability of RAW264.7 cells increased when pretreated with 400 μg/mL FIB. FIB inhibited the production of nitric oxide and proinflammatory cytokines by inhibiting NF-κB and MAPKs pathways. Therefore, FIB with W. cibaria D30 reduced the toxicity and increased the anti-inflammatory properties. These results indicate that FIB is a potential beneficial bioactive agent for functional foods.
Collapse
Affiliation(s)
- Hyeong-Yeop Kim
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Young Bae
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyung-Seok Yu
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kyung-Hoon Chang
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Young-Ho Hong
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Na-Kyoung Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|