Ercin M, Gezginci-Oktayoglu S, Bolkent S. Exendin-4 inhibits small intestinal glucose sensing and absorption through repression of T1R2/T1R3 sweet taste receptor signalling in streptozotocin diabetic mice.
Transl Res 2022;
246:87-101. [PMID:
35385790 DOI:
10.1016/j.trsl.2022.03.012]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
The small intestine, which is the area where sugars are absorbed, should be considered in the approaches developed for the treatment of diabetes. However, studies on small intestine damage in diabetic individuals, and the effects of current treatments on the small intestine are very limited. This is the first study to investigate the effects of exendin-4, a GLP-1 receptor agonist, on small intestine injury in diabetic mice. BALB/c male mice were divided into 4 groups for this study. The first group was given citrate buffer, the second group was given exendin-4, the third group was given streptozotocin (STZ), and the fourth group was given both exendin-4, and STZ. As the results, we determined a decrease in the edema and deterioration in the integrity of the villi, disruption in continuity of the brush border, fibrosis and enterocyte apoptosis, while the TNFα level and crypt cell proliferation were increased in the small intestinal tissue of exendin-4 treated STZ diabetic mice. Furthermore, the levels of duodenal tissue glucose, SGLT1, and GLUT2 were decreased, whereas there was an increase in GIP level in diabetic mice administered with exendin-4. Moreover, we determined that the sweet taste receptors T1R2/T1R3, downstream molecules PLCβ2, α-gustducin and associated secondary messengers IP3, cAMP, which were increased in the duodenal tissue of STZ-diabetic mice, decreased with exendin-4 administration. These findings were evaluated as that exendin-4 reduces glucose absorption by suppressing the T1R2/T1R3 sweet taste signal perception pathway in duodenum of STZ diabetic mice.
Collapse