1
|
Alam S, Richi FT, Hasnat H, Ahmed F, Emon NU, Uddin MJ, Rana GMM, Wang S, Yeasmin MS, Ahmed NU, Khan MS, Al Mamun A. Chemico-pharmacological evaluations of the dwarf elephant ear ( Colocasia affinis Schott) plant metabolites and extracts: health benefits from vegetable source. Front Pharmacol 2024; 15:1428341. [PMID: 39193333 PMCID: PMC11347761 DOI: 10.3389/fphar.2024.1428341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Colocasia affinis Schott (Family: Araceae), found in the Asian region, is a traditional root vegetable consumed by the locals and well-known as Dwarf Elephant Ear. Methods: For the pharmacological exploration of this root vegetable, four kupchan fractions (i.e. HSF, DCMSF, EASF, and AQSF) from ethanolic extract of C. affinis were employed to in vitro i.e. antioxidant, cytotoxicity, and antimicrobial and in vivo i.e. antidiarrheal and analgesic assays, followed by phytochemical screening and GC-MS protocol. Result and Discussion: In the antioxidant assay, the AQSF showed promising potential with an IC50 value of 29.4 μg/mL and additionally, it exhibited the greatest overall phenolic content, measuring 57.23 mg GAE/gm. of extract among other fractions. The AQSF also revealed promising cytotoxic activity in brine shrimp lethality assay with an LC50 value of 1.36 μg/mL. Both AQSF and EASF exhibited substantial antimicrobial efficacy against both gram-positive and gram-negative bacteria as well as various fungus species with a remarkable zone of inhibitions compared to standards. Whereas, during both the castor oil-induced antidiarrheal and acetic acid-induced writhing assay, the DCMSF at 400 mg/kg dose exhibited the highest 51.16% reduction of diarrhea and 52.33% reduction of writhing. Phytochemical screening revealed several chemical groups while GC-MS study of different fractions of dwarf elephant ear ethanolic extract revealed 48 different bioactive phytochemicals in total. Several targets such as KAS, DHFR for anti-microbial activities, GLR, URO for antioxidant activities, EGFR, BCL-2 for cytotoxicity, KOR, DOR for antidiarrheal activities and COX-2, TNF-α for analgesic activities are considered for molecular docking against identified phytocompounds and standards along with ADME/T studies to ascertain their safety, efficacy and drug likeliness profiles. Conclusion: To recapitulate, our study revealed that vegetables such as dwarf elephant ear can be considered as a prospective source of therapeutics and drug development besides their nutritive food values.
Collapse
Affiliation(s)
- Safaet Alam
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | | | - Hasin Hasnat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Firoj Ahmed
- Bangladesh Council of Scientific and Industrial Research, Rajshahi, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Jasim Uddin
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - G. M. Masud Rana
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Mst. Sarmina Yeasmin
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Nazim Uddin Ahmed
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Salim Khan
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Kumar A, Gupta K, Islam Apu MA, Abrol GS, Tomer V. Effect of household processing on nutritional and antinutritional composition, mineral-mineral ratios, and functional properties of Colocasia leaves. Heliyon 2023; 9:e17137. [PMID: 37383195 PMCID: PMC10293681 DOI: 10.1016/j.heliyon.2023.e17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Colocasia leaves are high in nutrients and other phytochemicals but their utilization remains limited due to a lack of awareness. Higher content of anti-nutritional factors like oxalic and tannic acid in Colocasia leaves limit nutrient availability. In the present study, the effect of four household procedures viz. soaking (8-12 h), microwave heating (2-6 min), cooking (30-60 min), and blanching (1-3 min), followed by sun drying, was studied on the nutritional, antinutritional and functional properties of Colocasia leaves. A significant increase in crude fibre (25.7%-29.65%), and protein (4.33-15.6%) content was found in all the treatments except for the microwave treatment. A significant decrease in fat (5.7-31.4%), ash (20.34-28.22%), oxalic acid (27.07-35.32%), and tannic acid (up to 96%) was also found in various treatments. Among the minerals, a significant increase was reported for calcium (up to 16.38%), and iron (up to 5.9%). The highest mineral retention was found in soaked samples. The soaked and cooked samples also had a higher Ca: Mg ratio. A significant change in functional properties was also found. FTIR peaks suggested no significant qualitative effect occurred on phytochemical or physicochemical characteristics. Cluster analysis showed that cooking was second to soaking in terms of overall quality which were most comparable to the control. Cooking efficiently reduced the antinutritional factors, however, a significant loss of nutrients and functional properties was also observed. Therefore, the soaking of Colocasia leaves for 8-10 h is recommended as the best practice before their food applications.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Postharvest Technology, Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, India
| | - Kritika Gupta
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, 38677, USA
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, 38677, USA
| | - Ghan Shyam Abrol
- Department of Postharvest Technology, Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
3
|
Kelbessa BG, Ghadamgahi F, Kumar PL, Ortiz R, Whisson SC, Bhattacharjee R, Vetukuri RR. Antagonistic and plant growth promotion of rhizobacteria against Phytophthora colocasiae in taro. FRONTIERS IN PLANT SCIENCE 2022; 13:1035549. [PMID: 36531382 PMCID: PMC9755733 DOI: 10.3389/fpls.2022.1035549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Taro leaf blight caused by Phytophthora colocasiae adversely affects the growth and yield of taro. The management of this disease depends heavily on synthetic fungicides. These compounds, however, pose potential hazards to human health and the environment. The present study aimed to investigate an alternative approach for plant growth promotion and disease control by evaluating seven different bacterial strains (viz., Serratia plymuthica, S412; S. plymuthica, S414; S. plymuthica, AS13; S. proteamaculans, S4; S. rubidaea, EV23; S. rubidaea, AV10; Pseudomonas fluorescens, SLU-99) and their different combinations as consortia against P. colocasiae. Antagonistic tests were performed in in vitro plate assays and the effective strains were selected for detached leaf assays and greenhouse trials. Plant growth-promoting and disease prevention traits of selected bacterial strains were also investigated in vitro. Our results indicated that some of these strains used singly (AV10, AS13, S4, and S414) and in combinations (S4+S414, AS13+AV10) reduced the growth of P. colocasiae (30-50%) in vitro and showed disease reduction ability when used singly or in combinations as consortia in greenhouse trials (88.75-99.37%). The disease-suppressing ability of these strains may be related to the production of enzymes such as chitinase, protease, cellulase, and amylase. Furthermore, all strains tested possessed plant growth-promoting traits such as indole-3-acetic acid production, siderophore formation, and phosphate solubilization. Overall, the present study revealed that bacterial strains significantly suppressed P. colocasiae disease development using in vitro, detached leaf, and greenhouse assays. Therefore, these bacterial strains can be used as an alternative strategy to minimize the use of synthetic fungicides and fertilizers to control taro blight and improve sustainable taro production.
Collapse
Affiliation(s)
- Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | | | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
4
|
Mitharwal S, Kumar A, Chauhan K, Taneja NK. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chem 2022; 383:132406. [PMID: 35176712 DOI: 10.1016/j.foodchem.2022.132406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
Abstract
Colocasia esculenta(L) or taro is a tropical crop largely produced for its tubers (corms) while leaves and stems remain underutilized and untapped by-products with promising potential applications.Colocasialeaves are low in calories, rich in proteins, dietary fiber, and micronutrients. However, its utilization as food remains limited owing to the lack of awareness vis-à-vis its nutritional profile and the presence of antinutrients such as tannins, phytates and oxalates. The antinutritional factors can be overcome by cooking and varied processing techniques thereby unveiling the nutritional benefits. The high content of bioactive compounds and antioxidative potential of colocasia leaves renders several health benefits such as anticancer, antidiabetic, anti-inflammatory activity. The paper reviews the available literature on the nutritional, antinutritional, phytochemical profile of taro leaves and the advanced analytical techniques for their identification and quantification. Further, its health benefits and food applications have been discussed.
Collapse
Affiliation(s)
- Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India.
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| |
Collapse
|
5
|
Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by Colocasia esculenta var. aquatilis Hassk Extract. Sci Pharm 2022. [DOI: 10.3390/scipharm90030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future.
Collapse
|
6
|
Baltazar-Bernal O, Spinoso-Castillo JL, Mancilla-Álvarez E, Bello-Bello JJ. Arbuscular Mycorrhizal Fungi Induce Tolerance to Salinity Stress in Taro Plantlets ( Colocasia esculenta L. Schott) during Acclimatization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1780. [PMID: 35807732 PMCID: PMC9269145 DOI: 10.3390/plants11131780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Soil salinity is a problem that affects soil fertility and threatens agri-food crop production worldwide. Biotechnology, through plant micropropagation and the use of biofertilizers such as arbuscular mycorrhizal fungi (AMF), is an alternative to increase productivity and induce tolerance to salinity stress in different crops. This study aimed to evaluate the effect of different doses of the fungus Glomus intraradices on the ex vitro development of taro (Colocasia esculenta L. Schott cv. Criolla) plantlets under salinity stress during the acclimatization stage. In vitro-obtained C. esculenta plantlets were inoculated at different doses (0, 100, and 200 spores per plantlet) of G. intraradices during acclimatization. At 60 d of acclimatization in the greenhouse, plantlets were exposed to 100 mM NaCl salinity stress for 10 d. After the stress period, plantlet development, colonization percentage, and biomass were evaluated. In addition, the content of chlorophyll, carotenoids, proteins, proline, glycine-betaine, soluble phenols, and antioxidant capacity were quantified. The results showed differences in the developmental, physiological, and biochemical variables evaluated; however, no changes in total protein content were observed. Spore colonization showed that the symbiotic association has positive effects on the development of plantlets with or without salinity stress. This symbiotic interaction contributes to salinity stress tolerance in C. esculenta plantlets. The early application of AMF in in vitro-obtained taro plantlets is an alternative to increase or maintain the productivity of this crop in saline soils.
Collapse
Affiliation(s)
- Obdulia Baltazar-Bernal
- Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, Veracruz 94953, Mexico; (O.B.-B.); (J.L.S.-C.); (E.M.-Á.)
| | - José Luis Spinoso-Castillo
- Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, Veracruz 94953, Mexico; (O.B.-B.); (J.L.S.-C.); (E.M.-Á.)
| | - Eucario Mancilla-Álvarez
- Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, Veracruz 94953, Mexico; (O.B.-B.); (J.L.S.-C.); (E.M.-Á.)
| | - Jericó Jabín Bello-Bello
- CONACYT—Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, Veracruz 94953, Mexico
| |
Collapse
|
7
|
Balogun TA, Ipinloju N, Abdullateef OT, Moses SI, Omoboyowa DA, James AC, Saibu OA, Akinyemi WF, Oni EA. Computational Evaluation of Bioactive Compounds from Colocasia affinis Schott as a Novel EGFR Inhibitor for Cancer Treatment. Cancer Inform 2021; 20:11769351211049244. [PMID: 34646061 PMCID: PMC8504293 DOI: 10.1177/11769351211049244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) is a transmembrane protein that belongs to the ErbB/HER-family of tyrosine kinase receptors. Somatic mutations and overexpression of EGFR have been reported to play a vital role in cancer cell development and progression, including cell proliferation, differentiation, angiogenesis, apoptosis, and metastatic spread. Hence, EGFR is an important therapeutic target for the treatment of various types of epithelial cancers. Somatic mutations have led to resistance to clinically approved synthetic EGFR inhibitors. Furthermore, synthetic EGFR inhibitors have been associated with several side effects. Thus, there is a need to develop novel EGFR inhibitors with an acceptable biosafety profile and high efficacy. METHODS Herein, we employed structural bioinformatics and theoretical chemistry techniques via molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) calculation, density functional theory analysis (DFT), and pharmacokinetic study to identify novel EGFR inhibitors. RESULTS The stringent molecular docking and MM-GBSA calculations identified MET 793, LYS 745, PHE 723, ASP 855, ARG 411, and THR 854 as principal amino acid residues for EGFR-ligands interactions. Furthermore, Colocasia affinis Schott compounds exhibited higher binding energy and more stable interactions than the reference compound (gefitinib). DFT analysis also ascertains better bioactivity and chemical reactivity of C. affinis Schott with favorable intramolecular charge transfer between electron-donor and electron acceptor groups. The pharmacokinetic profile of C. affinis Schott bioactive compounds satisfies Lipinski's rule of five assessment. CONCLUSION Collectively, C. affinis Schott compounds demonstrated higher inhibitory potentials against EGFR and better pharmacological properties when compared with gefitinib. C. affinis Schott compounds are therefore suggested as promising therapeutic EGFR inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Toheeb A Balogun
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Nureni Ipinloju
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Segun I Moses
- Department of Microbiology, Federal University of Technology Akure, Akure, Nigeria
| | | | - Akinwumi C James
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oluwatosin A Saibu
- Department of Environmental Toxicology, University of Duisburg-Essen, Duisburg, Germany
| | - Wumi F Akinyemi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ebenezer A Oni
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
8
|
Kim YJ, Park SY, Lee JH. Berteroin ameliorates lipid accumulation through AMPK-mediated regulation of hepatic lipid metabolism and inhibition of adipocyte differentiation. Life Sci 2021; 282:119668. [PMID: 34087283 DOI: 10.1016/j.lfs.2021.119668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
AIMS Berteroin (5-methylthiopentyl isothiocyanate) is a naturally occurring sulforaphane analog containing a non-oxidized sulfur atom in cruciferous vegetables. The objectives of the present study were to determine the effects of berteroin on lipid metabolism in hepatocytes and adipocytes and to elucidate the mechanisms involved. MAIN METHODS The effect of berteroin on lipid metabolism were evaluated in liver X receptor α agonist-stimulated HepG2 cells and adipocyte differentiation-induced 3T3-L1 cells using MTT assay, western blot, real time polymerase chain reaction, oil red O staining, and triglyceride assay. KEY FINDINGS T0901317 treatment increased the expression of sterol regulatory element binding protein (SREBP)-1c, a major transcription factor that mediates lipogenesis, and berteroin pretreatment significantly inhibited the expressions of T0901317-induced SREBP-1c and lipogenic genes. Especially, berteroin had a greater inhibitory effect on T0901317-induced SREBP-1c activation than sulforaphane, AICAR, or metformin. Berteroin also markedly suppressed lipid droplet formations and triglyceride accumulations caused by both T0901317 stimulation in HepG2 hepatocytes and differentiation induction in 3T3-L1 preadipocytes. However, berteroin significantly increased the expression of mitochondrial fatty acid oxidation-related genes (carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator-activated receptor gamma coactivator-1α) and the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in HepG2 cells. Interestingly, effects of berteroin on the expressions of SREBP-1c protein and CPT-1 mRNA were remarkably prevented by compound C (an AMPK inhibitor). SIGNIFICANCE Our results suggest berteroin-inhibited hepatic lipid accumulation and adipocyte differentiation might be mediated by AMPK activation and that berteroin might be useful for the prevention, amelioration, and treatment of metabolic diseases, including hepatic steatosis.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
9
|
Alam S, Rashid MA, Sarker MMR, Emon NU, Arman M, Mohamed IN, Haque MR. Antidiarrheal, antimicrobial and antioxidant potentials of methanol extract of Colocasia gigantea Hook. f. leaves: evidenced from in vivo and in vitro studies along with computer-aided approaches. BMC Complement Med Ther 2021; 21:119. [PMID: 33845836 PMCID: PMC8042880 DOI: 10.1186/s12906-021-03290-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Colocasia gigantea, locally named as kochu is well-known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea. METHODS The antidiarrheal investigation was performed by using in vivo castor oil-induced diarrheal method whereas in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites that were appraised with Schrödinger-Maestro v11.1 and Biovia Discovery Studio. RESULTS The induction of plant extract (200 and 400 mg/kg, b.w, p.o) has minimized the castor oil mediated diarrhea by 16.96% (p < 0.01) and 38.89% (p < 0.001) respectively compared to control group. The methanol extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and yielded 67.68 μg/mL of IC50 value in the DPPH test. In the PASS prediction, selected isolated compounds have demonstrated significant antidiarrheal and antimicrobial activity following the Lipinski drug rules which have ascertained efficacy with the compounds in molecular docking study. CONCLUSION The results of this scientific research reflects that the methanol soluble extract of C. gigantea is safe and may provide possibilities of alleviation of diarrhea along with being a potential wellspring of antioxidant and antimicrobial agents which can be considered as an alternate source for exploration of new medicinal products in near future.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid road, Dhanmondi, Dhaka, 1207 Bangladesh
| | - Nazim Uddin Emon
- Department of Public Health, School of Science and Technology, Bangladesh Open University, Gazipur, Dhaka, 1705 Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318 Bangladesh
| | - Mohammad Arman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318 Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| | - Mohammad Rashedul Haque
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
10
|
Verna G, Sila A, Liso M, Mastronardi M, Chieppa M, Cena H, Campiglia P. Iron-Enriched Nutritional Supplements for the 2030 Pharmacy Shelves. Nutrients 2021; 13:378. [PMID: 33530485 PMCID: PMC7912282 DOI: 10.3390/nu13020378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Iron deficiency (ID) affects people of all ages in many countries. Due to intestinal blood loss and reduced iron absorption, ID is a threat to IBD patients, women, and children the most. Current therapies can efficiently recover normal serum transferrin saturation and hemoglobin concentration but may cause several side effects, including intestinal inflammation. ID patients may benefit from innovative nutritional supplements that may satisfy iron needs without side effects. There is a growing interest in new iron-rich superfoods, like algae and mushrooms, which combine antioxidant and anti-inflammatory properties with iron richness.
Collapse
Affiliation(s)
- Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Annamaria Sila
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Marina Liso
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S, 27100 Pavia, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
11
|
Calle J, Gasparre N, Benavent-Gil Y, Rosell CM. Aroids as underexplored tubers with potential health benefits. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:319-359. [PMID: 34311903 DOI: 10.1016/bs.afnr.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott are the most popular tubers among the Araceas family. Their chemical composition related to their nutritional benefits could make these rhizomes a valid option for the nutritional and technological improvement of food products. This chapter provide a clarification about the correct nomenclature of both tubers giving an insight around the principle components and their health effects. The scientific literature review has primarily highlighted several in vitro and animal studies where the consumption (leaves and whole tuber) of Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott was related with certain antihyperglycemic, antihypertensive, hypoglycemic and prebiotic effects. Owing to their functional properties, different component from these rhizomes, specially starch, mucilage and powders are being used by the food industry. Their ability to behave as thickener and gelling agent has allowed their incorporation in baked food, food paste and beverages. This chapter suggests the development of more research around these rhizomes since they could potentially play, with other crops, an important role in the future sustainable strategies to feed the planet.
Collapse
Affiliation(s)
- Jehannara Calle
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain; Food research Institute for the Food Industry (IIIA), La Habana, Cuba
| | - Nicola Gasparre
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
12
|
Raut S, Gupta N, Everard M, Singh IS. Commercially and medicinally significant aquatic macrophytes: potential for improving livelihood security of indigenous communities in northern Bihar, India. JOURNAL OF THREATENED TAXA 2020. [DOI: 10.11609/jott.5640.12.13.16819-16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The dispersed wetlands in the Darbhanga District of northern Bihar, India, provide a diversity of niches supporting substantial floral and faunal richness. The aquatic macrophytes of a representative range of perennial water bodies were surveyed fortnightly from June to September 2019, supported by a market survey undertaken with local stakeholders. A total of 61 species of vascular macrophytes was recorded, the majority of them Angiosperms (33 species of Dicotyledons from 21 families, and 26 Monocotyledons from 13 families) and two were Pteridophytes. This paper highlights the distribution pattern and potential commercial and medicinal values of aquatic macrophytes found in different wetland systems in northern Bihar. It further stresses their importance for subsistence, medicinal and economic purposes supporting the livelihoods of local people. Current trends and risks contributing to the degradation and loss of this diverse flora and its supporting habitats are considered. We recommend further assessment of the occurrence and values of this botanical resource, and extension of valuation to encompass the diverse additional ecosystem service benefits provided by the region’s wetland systems, as a basis for wetland conservation strategies founded on sustainable management and wise use, with particular reference to the potential for enhancing livelihood security of indigenous communities.
Collapse
|
13
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|