1
|
Chen Y, Chang Y, Ma C, Luo L, Lu T, Yao J. Identification of bioactive compounds and inhibitory effects of TNF-α and COX-2 in the extract from cultured three-spot seahorse ( H. trimaculatus). Food Sci Nutr 2024; 12:1095-1104. [PMID: 38370070 PMCID: PMC10867490 DOI: 10.1002/fsn3.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Three-spot seahorse (Hippocampus trimaculatus) has been consumed as traditional Chinese medicine in Asian society. This study was designed to analyze the bioactive compounds of the solvent extracts from cultured three-spot seahorse by high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS). Subsequently, their biological activities were evaluated and confirmed by cell modes and Western blot analysis. Experimental results indicated that taurine and arginine were the primary bioactive compounds identified and quantified without pre- or post-column derivatization within 20 min retention time. The analytical method was established and validated with intraday/interday RSD from 0.25% to 3.34% and with recovery from 87.8% to 91.2%. As compared to other extracts, water layer extract (WLE) contained the most taurine and arginine contents of 6.807 and 0.437 mg/g (dry basis), respectively. In the meanwhile, WLE also showed anti-inflammatory activity on LPS-induced NO production and inhibited the protein expression of TNF-α and COX-2 by Western blot analysis with better cell viability.
Collapse
Affiliation(s)
- Yung‐Husan Chen
- Xiamen Key Laboratory of Marine Medicinal Natural Products ResourcesXiamen Medical CollegeXiamenChina
- Fujian Provincial University Marine Biomedical Resources Engineering Research centerXiamen Medical CollegeXiamenChina
| | - Yu‐Wei Chang
- Department of Food ScienceNational Taiwan Ocean UniversityKeelung CityTaiwan
| | - Chu‐Wen Ma
- Xiamen Key Laboratory of Marine Medicinal Natural Products ResourcesXiamen Medical CollegeXiamenChina
| | - Lian‐Zhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products ResourcesXiamen Medical CollegeXiamenChina
| | - Ting‐Jang Lu
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Jeng‐Yuan Yao
- Xiamen Key Laboratory of Marine Medicinal Natural Products and Cell EngineeringXiamen Medical CollegeXiamenChina
- Key Laboratory of Functional and Clinical Translational MedicineFujian Province University, Xiamen Medical CollegeXiamenChina
| |
Collapse
|
2
|
Li M, Chen X, Huang W, Wu K, Bai Y, Guo D, Guo C, Shu Y. Comprehensive Identification of the β-Amylase (BAM) Gene Family in Response to Cold Stress in White Clover. PLANTS (BASEL, SWITZERLAND) 2024; 13:154. [PMID: 38256708 PMCID: PMC10820397 DOI: 10.3390/plants13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
White clover (Trifolium repens L.) is an allopolyploid plant and an excellent perennial legume forage. However, white clover is subjected to various stresses during its growth, with cold stress being one of the major limiting factors affecting its growth and development. Beta-amylase (BAM) is an important starch-hydrolyzing enzyme that plays a significant role in starch degradation and responses to environmental stress. In this study, 21 members of the BAM gene family were identified in the white clover genome. A phylogenetic analysis using BAMs from Arabidopsis divided TrBAMs into four groups based on sequence similarity. Through analysis of conserved motifs, gene duplication, synteny analysis, and cis-acting elements, a deeper understanding of the structure and evolution of TrBAMs in white clover was gained. Additionally, a gene regulatory network (GRN) containing TrBAMs was constructed; gene ontology (GO) annotation analysis revealed close interactions between TrBAMs and AMY (α-amylase) and DPE (4-alpha-glucanotransferase). To determine the function of TrBAMs under various tissues and stresses, RNA-seq datasets were analyzed, showing that most TrBAMs were significantly upregulated in response to biotic and abiotic stresses and the highest expression in leaves. These results were validated through qRT-PCR experiments, indicating their involvement in multiple gene regulatory pathways responding to cold stress. This study provides new insights into the structure, evolution, and function of the white clover BAM gene family, laying the foundation for further exploration of the functional mechanisms through which TrBAMs respond to cold stress.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Kaiyue Wu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Donglin Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| |
Collapse
|
3
|
Ngangom L, Venugopal D, Pandey N. Investigation of Trifolium repens L. from the Indian Himalayan region as a phyto-therapeutic agent. Nat Prod Res 2024:1-11. [PMID: 38178604 DOI: 10.1080/14786419.2023.2299319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Trifolium repens is a well-known herbaceous, perennial herb and has been extensively used in the traditional medicine system over the years. Various parts of the plant are traditionally used as a curative agent against several health ailments such as skin problems, wound healing, stomach disorders, sedative, fever, antiseptic, analgesic, expectorant, psoriasis and eczema. To maximise the plant's potential for usage in the future, the review also aims to update information about its significant pharmacological properties. The ethnomedicinal benefits of T. repens have been well studied; however, the facets of the plant have not been explored yet. The current review outlines several bioactive compounds quantified from T. repens and a few of them namely quercetin, kaempferol, myricetin, acacetin and linamarin, have been reported to have biological activities such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antiaging and anti-hepatotoxic activities. A significant number of in vitro studies have been done on the plant extract, but little is known about the isolation and efficacy of the potent natural bioactive compounds of T. repens. The bioactive compounds in T. repens can be used for advanced drug development against various health disorders.
Collapse
Affiliation(s)
- Leirika Ngangom
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Divya Venugopal
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
4
|
Dai W, Zhang L, Dai L, Tian Y, Ye X, Wang S, Li J, Wang Q. Comparative Analysis of Chemical Composition of Zanthoxylum myriacanthum Branches and Leaves by GC-MS and UPLC-Q-Orbitrap HRMS, and Evaluation of Their Antioxidant Activities. Molecules 2023; 28:5631. [PMID: 37570601 PMCID: PMC10419930 DOI: 10.3390/molecules28155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Zanthoxylum myriacanthum Wall. ex Hook. f., a plant belonging to the Rutaceae family and the Zanthoxylum genus, is extensively utilized for its medicinal properties and as a culinary seasoning in China and Southeast Asian countries. However, the chemical composition and biological activities of Z. myriacanthum branches and leaves remain insufficiently explored. In this study, the volatile and non-volatile components of Z. myriacanthum branches and leaves were analyzed using GC-MS and UPLC-Q-Orbitrap HRMS techniques. A total of 78 volatile compounds and 66 non-volatile compounds were identified. The volatile compounds were predominantly terpenoids and aliphatic compounds, while the non-volatile compounds were primarily flavonoids and alkaloids. The branches contained 52 volatile compounds and 33 non-volatile compounds, whereas the leaves contained 48 volatile compounds and 40 non-volatile compounds. The antioxidant activities of the methanol extracts from Z. myriacanthum branches and leaves were evaluated using ABTS and DPPH free-radical-scavenging assays, both of which demonstrated certain antioxidant activity. The methanol extract of leaves demonstrated significantly higher antioxidant activity compared to that of the branches, possibly due to the higher presence of flavonoids and phenols in the leaves, with IC50 values of 7.12 ± 0.257 μg/mL and 1.22 × 102 ± 5.01 μg/mL for ABTS and DPPH, respectively. These findings enhance our understanding of the chemical composition and antioxidant potential of Z. myriacanthum. The plant holds promise as a natural source of antioxidants for applications in pharmaceuticals, cosmetics, and functional foods. Further research can explore its broader biological activities and potential applications.
Collapse
Affiliation(s)
- Wei Dai
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Liangqian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Liping Dai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Xinger Ye
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Sina Wang
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Jingtao Li
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Wang H, Wu Y, He Y, Li G, Ma L, Li S, Huang J, Yang G. High-quality chromosome-level de novo assembly of the Trifolium repens. BMC Genomics 2023; 24:326. [PMID: 37312068 DOI: 10.1186/s12864-023-09437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND White clover (Trifolium repens L.), an excellent perennial legume forage, is an allotetraploid native to southeastern Europe and southern Asia. It has high nutritional, ecological, genetic breeding, and medicinal values and exhibits excellent resistance to cold, drought, trample, and weed infestation. Thus, white clover is widely planted in Europe, America, and China; however, the lack of reference genome limits its breeding and cultivation. This study generated a white clover de novo genome assembly at the chromosomal level and annotated its components. RESULTS The PacBio third-generation Hi-Fi assembly and sequencing methods generated a 1096 Mb genome size of T. repens, with contigs of N50 = 14 Mb, scaffolds of N50 = 65 Mb, and BUSCO value of 98.5%. The newly assembled genome has better continuity and integrity than the previously reported white clover reference genome; thus provides important resources for the molecular breeding and evolution of white clover and other forage. Additionally, we annotated 90,128 high-confidence gene models from the genome. White clover was closely related to Trifolium pratense and Trifolium medium but distantly related to Glycine max, Vigna radiata, Medicago truncatula, and Cicer arietinum. The expansion, contraction, and GO functional enrichment analysis of the gene families showed that T. repens gene families were associated with biological processes, molecular function, cellular components, and environmental resistance, which explained its excellent agronomic traits. CONCLUSIONS This study reports a high-quality de novo assembly of white clover genome obtained at the chromosomal level using PacBio Hi-Fi sequencing, a third-generation sequencing. The generated high-quality genome assembly of white clover provides a key basis for accelerating the research and molecular breeding of this important forage crop. The genome is also valuable for future studies on legume forage biology, evolution, and genome-wide mapping of quantitative trait loci associated with the relevant agronomic traits.
Collapse
Affiliation(s)
- Hongjie Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yongqiang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yong He
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Guoyu Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lichao Ma
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Shuo Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | | | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China.
| |
Collapse
|
6
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
7
|
Ahmad S, Zeb A, Ayaz M, Murkovic M. Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03416-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|