1
|
Ma Y, Zhang L, Ma X, Bai K, Tian Z, Wang Z, Muratkhan M, Wang X, Lü X, Liu M. Saccharide mapping as an extraordinary method on characterization and identification of plant and fungi polysaccharides: A review. Int J Biol Macromol 2024; 275:133350. [PMID: 38960255 DOI: 10.1016/j.ijbiomac.2024.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.
Collapse
Affiliation(s)
- Yuntian Ma
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lichen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuoer Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhangyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Marat Muratkhan
- Department of Food Technology and Processing Products, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Manshun Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Inactivation of Endogenous Pectin Methylesterases by Radio Frequency Heating during the Fermentation of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pectin methylesterase (PME) is a methyl ester group hydrolytic enzyme of either plant or microbial origin. Importantly, endogenous PMEs in fruits can catalyze the demethoxylation of pectin with a bulk release of methanol, largely impacting the fruit juice and wine industries. Here, we demonstrated radio frequency (RF) heating for inactivation of endogenous PMEs and investigated the relevant mechanisms underpinning enzymatic inactivation. The RF heating curve indicated that the optimal heating rate was achieved at an electrode gap of 90 mm (compared to 100 mm and 110 mm) and that the inactivation rate of the enzyme increases with heating time. RF heating exhibited better effects on enzymatic inactivation than traditional water heating, mainly by changing the secondary structures of PMEs, including α-helix, β-sheet, β-turn, and random coil. Moreover, fluorescence spectroscopy indicated changes in the tertiary structure with a significant increase in fluorescence intensity. Significantly, application of RF heating for inactivation of PMEs resulted in a 1.5-fold decrease in methanol during the fermentation of jujube wine. Collectively, our findings demonstrated an effective approach for inactivating endogenous PMEs during the bioprocesses of fruits.
Collapse
|